!49404 modify description of apis aviod of repeat

Merge pull request !49404 from ZhidanLiu/code_docs_master
This commit is contained in:
i-robot 2023-02-27 01:52:23 +00:00 committed by Gitee
commit 7c05d1ddcf
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
5 changed files with 33 additions and 26 deletions

View File

@ -3,12 +3,12 @@ mindspore.ops.argsort
.. py:function:: mindspore.ops.argsort(input_x, axis=-1, descending=False)
返回输入Tensor沿轴按特定顺序排序索引。
对输入Tensor沿轴按特定顺序排序并返回排序索引。
参数:
- **input_x** (Tensor) - 待排序的输入Tensor。
- **axis** (int) - 指定排序轴。默认值:-1。
- **descending** (bool) - 控制输出顺序。如果 `descending` 为True按照元素值升序排序否则降顺排序。默认值False。
- **axis** (int) - 指定排序轴。默认值:-1,表示指定最后一维
- **descending** (bool) - 输出顺序。如果 `descending` 为True按照元素值升序排序否则降顺排序。默认值False。
返回:
Tensor排序后输入Tensor的索引。数据类型为int32。

View File

@ -3,8 +3,8 @@ mindspore.ops.max_unpool1d
.. py:function:: mindspore.ops.max_unpool1d(x, indices, kernel_size, stride=None, padding=0, output_size=None)
`maxpool1d` 的部分逆过程。 `maxpool1d` 不是完全可逆的,因为非最大值丢失。
`max_unpool1d``maxpool1d` 的输出为输入,包括最大值的索引。在计算 `maxpool1d` 部分逆的过程,非最大值设为零。
`max_unpool1d``maxpool1d` 的部分逆过程,因为非最大值丢失。
`max_unpool1d``maxpool1d` 的输出和最大值的索引为输入。然后计算 `maxpool1d` 部分逆的过程,非最大值设为零。
支持的输入数据格式为 :math:`(N, C, H_{in})`:math:`(C, H_{in})` ,输出数据的格式为 :math:`(N, C, H_{out})`
:math:`(C, H_{out})` ,计算公式如下:

View File

@ -7,8 +7,14 @@ mindspore.ops.tensor_split
参数:
- **x** (Tensor) - 待分割的Tensor。
- **indices_or_sections** (Union[int, tuple(int), list(int)]) - 如果 `indices_or_sections` 是整数类型n输入将沿 `axis` 轴分割成n份。如果输入沿着 `axis` 轴能被n整除那么每个切片的大小相同为 :math:`x.size(axis) / n` 。如果不能被n整除那么前 :math:`x.size(axis) % n` 个切片的大小为 :math:`x.size(axis) // n + 1` ,其余切片的大小为 :math:`x.size(axis) // n`
如果 `indices_or_sections` 是由int组成list或者tuple那么输入将沿着 `axis` 轴在tuple或list中的索引处切分。例如:math:`indices\_or\_sections=[2, 3]`:math:`axis=0` 将得到切片 :math:`x[:2]` :math:`x[2:3]` ,和 :math:`x[3:]` .
- **indices_or_sections** (Union[int, tuple(int), list(int)])
- 如果 `indices_or_sections` 是整数类型n输入tensor将分割成n份。
- 如果 :math:`x.size(axis)` 能被n整除那么子切片的大小相同:math:`x.size(axis) / n`
- 如果 :math:`x.size(axis)` 不能被n整除那么前 :math:`x.size(axis) % n` 个切片的大小为 :math:`x.size(axis) // n + 1` ,其余切片的大小为 :math:`x.size(axis) // n`
- 如果 `indices_or_sections` 类型为tuple(int) 或 list(int)那么输入tensor将在tuple或list中的索引处切分。例如给定参数 :math:`indices\_or\_sections=[1, 4]`:math:`axis=0` 将得到切片 :math:`x[:1]` :math:`x[1:4]` ,和 :math:`x[4:]`
- **axis** (int) - 指定分割轴。默认值0。
返回:

View File

@ -3134,12 +3134,12 @@ def sort(input_x, axis=-1, descending=False):
def argsort(input_x, axis=-1, descending=False):
r"""
Return the indices that sort the input tensor along the given dimension in the specified order.
Sorts the input tensor along the given dimension in specified order and return the sorted indices.
Args:
input_x(Tensor): The input tensor to sort.
axis (int): The dimension to sort along. Default: -1.
descending (bool): Controls the sort order. If `descending` is True then the elements
axis (int): The axis to sort along. Default: -1, means the last axis
descending (bool): The sort order. If `descending` is True then the elements
are sorted in descending order by value. Otherwise sort in descending order. Default: False.
Returns:
@ -5273,15 +5273,18 @@ def tensor_split(x, indices_or_sections, axis=0):
Args:
x (Tensor): A Tensor to be divided.
indices_or_sections (Union[int, tuple(int), list(int)]):
If `indices_or_sections` is an integer n, input is split into
n sections along dimension `axis`. If input is divisible by n along dimension `axis`, each section will be
of equal size, :math:`x.size(axis) / n` . If input is not divisible by n, the sizes of the first
:math:`x.size(axis) % n` sections will have size :math:`x.size(axis) // n + 1` , and the rest will
have size :math:`x.size(axis) // n` .
If `indices_or_sections` is a list or tuple of ints, then input is split
along dimension `axis` at each of the indices in the list, tuple. For instance,
:math:`indices\_or\_sections=[2, 3]` and :math:`axis=0` would result in the tensors :math:`x[:2]` ,
:math:`x[2:3]` , and :math:`x[3:]` .
- If `indices_or_sections` is an integer n, input tensor will be split into n sections.
- If :math:`x.size(axis)` can be divisible by n, sub-sections will have equal size
:math:`x.size(axis) / n` .
- If :math:`x.size(axis)` is not divisible by n, the first :math:`x.size(axis) % n` sections
will have size :math:`x.size(axis) // n + 1` , and the rest will have size :math:`x.size(axis) // n` .
- If `indices_or_sections` is of type tuple(int) or list(int), the input tensor will be split at the
indices in the list or tuple. For example, given parameters :math:`indices\_or\_sections=[1, 4]`
and :math:`axis=0` , the input tensor will be split into sections :math:`x[:1]` , :math:`x[1:4]` ,
and :math:`x[4:]` .
axis (int): The axis along which to split. Default: 0.
Returns:

View File

@ -750,14 +750,12 @@ def adaptive_max_pool3d(input, output_size, return_indices=False):
def max_unpool1d(x, indices, kernel_size, stride=None, padding=0, output_size=None):
r"""
Computes a partial inverse of maxpool1d.
max_unpool1d is a partial inverse of maxpool1d, since the non-maximal values are lost.
maxpool1d is not fully invertible, since the non-maximal values are lost.
max_unpool1d takes the output of maxpool1d as input including the indices of the maximal values
and computes a partial inverse in which all non-maximal values are set to zero. Typically the input
is of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`, and the output is of shape :math:`(N, C, H_{out})`
or :math:`(C, H_{out})`. The operation is as follows.
max_unpool1d takes the output of maxpool1d and indices of the maximal values as input.
It computes a partial inverse of maxpool1d with all non-maximal values will be set to zero.
Typically the input is of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`, and the output is of shape
:math:`(N, C, H_{out})` or :math:`(C, H_{out})`. The operation is as follows.
.. math::
\begin{array}{ll} \\