!14128 Add TNT model to model zoo

From: @ghostnet
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-03-29 09:07:28 +08:00 committed by Gitee
commit 7ad3a60568
7 changed files with 766 additions and 0 deletions

View File

@ -0,0 +1,75 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
eval.
"""
import os
import argparse
from mindspore import context
from mindspore import nn
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import dtype as mstype
from src.pet_dataset import create_dataset
from src.config import config_ascend, config_gpu
from src.tnt import tnt_b
parser = argparse.ArgumentParser(description='Image classification')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
parser.add_argument('--platform', type=str, default=None, help='run platform')
args_opt = parser.parse_args()
if __name__ == '__main__':
config_platform = None
if args_opt.platform == "Ascend":
config_platform = config_ascend
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend",
device_id=device_id, save_graphs=False)
elif args_opt.platform == "GPU":
config_platform = config_gpu
context.set_context(mode=context.PYNATIVE_MODE,
device_target="GPU", save_graphs=False)
else:
raise ValueError("Unsupported platform.")
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net = tnt_b(num_class=config_platform.num_classes)
if args_opt.checkpoint_path:
param_dict = load_checkpoint(args_opt.checkpoint_path)
load_param_into_net(net, param_dict)
net.set_train(False)
if args_opt.platform == "Ascend":
net.to_float(mstype.float16)
for _, cell in net.cells_and_names():
if isinstance(cell, nn.Dense):
cell.to_float(mstype.float32)
dataset = create_dataset(dataset_path=args_opt.dataset_path,
do_train=False,
config=config_platform,
platform=args_opt.platform,
batch_size=config_platform.batch_size)
step_size = dataset.get_dataset_size()
model = Model(net, loss_fn=loss, metrics={'acc'})
res = model.eval(dataset)
print("result:", res, "ckpt=", args_opt.checkpoint_path)

Binary file not shown.

After

Width:  |  Height:  |  Size: 147 KiB

View File

@ -0,0 +1,22 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""hub config."""
from src.tnt import tnt_b
def create_network(name, *args, **kwargs):
if name == 'TNT-B':
return tnt_b(*args, **kwargs)
raise NotImplementedError(f"{name} is not implemented in the repo")

View File

@ -0,0 +1,128 @@
# Contents
- [TNT Description](#tnt-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Environment Requirements](#environment-requirements)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Training Process](#training-process)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Model Description](#model-description)
- [Performance](#performance)
- [Training Performance](#evaluation-performance)
- [Inference Performance](#evaluation-performance)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
## [TNT Description](#contents)
The TNT (Transformer in Transformer) network is a pure transformer model for visual recognition. TNT treats an image as a sequence of patches and treats a patch as a sequence of pixels. TNT block utilizes a outer transformer block to process the sequence of patches and an inner transformer block to process the sequence of pixels.
[Paper](https://arxiv.org/abs/2103.00112): Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, Yunhe Wang. Transformer in Transformer. preprint 2021.
## [Model architecture](#contents)
The overall network architecture of TNT is show below:
![](./fig/tnt.PNG)
## [Dataset](#contents)
Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
- Dataset size: 7049 colorful images in 1000 classes
- Train: 3680 images
- Test: 3369 images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
## [Environment Requirements](#contents)
- Hardware(Ascend/GPU)
- Prepare hardware environment with Ascend or GPU. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below£º
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
## [Script description](#contents)
### [Script and sample code](#contents)
```python
TNT
├── eval.py # inference entry
├── fig
│ └── tnt.png # the illustration of TNT network
├── readme.md # Readme
└── src
├── config.py # config of model and data
├── pet_dataset.py # dataset loader
└── tnt.py # TNT network
```
## [Training process](#contents)
To Be Done
## [Eval process](#contents)
### Usage
After installing MindSpore via the official website, you can start evaluation as follows:
### Launch
```bash
# infer example
GPU: python eval.py --model tnt-b --dataset_path ~/Pets/test.mindrecord --platform GPU --checkpoint_path [CHECKPOINT_PATH]
```
> checkpoint can be downloaded at https://www.mindspore.cn/resources/hub.
### Result
```bash
result: {'acc': 0.95} ckpt= ./tnt-b-pets.ckpt
```
## [Model Description](#contents)
### [Performance](#contents)
#### Evaluation Performance
##### TNT on ImageNet2012
| Parameters | | |
| -------------------------- | -------------------------------------- |---------------------------------- |
| Model Version | TNT-B |TNT-S|
| uploaded Date | 21/03/2021 (month/day/year) | 21/03/2021 (month/day/year) |
| MindSpore Version | 1.1 | 1.1 |
| Dataset | ImageNet2012 | ImageNet2012|
| Input size | 224x224 | 224x224|
| Parameters (M) | 86.4 | 23.8 |
| FLOPs (M) | 14.1 | 5.2 |
| Accuracy (Top1) | 82.8 | 81.3 |
###### TNT on Oxford-IIIT Pet
| Parameters | | |
| -------------------------- | -------------------------------------- |---------------------------------- |
| Model Version | TNT-B |TNT-S|
| uploaded Date | 21/03/2021 (month/day/year) | 21/03/2021 (month/day/year) |
| MindSpore Version | 1.1 | 1.1 |
| Dataset | Oxford-IIIT Pet | Oxford-IIIT Pet|
| Input size | 384x384 | 384x384|
| Parameters (M) | 86.4 | 23.8 |
| Accuracy (Top1) | 95.0 | 94.7 |
## [Description of Random Situation](#contents)
In dataset.py, we set the seed inside "create_dataset" function. We also use random seed in train.py.
## [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

View File

@ -0,0 +1,54 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py and eval.py
"""
from easydict import EasyDict as ed
config_ascend = ed({
"num_classes": 37,
"image_height": 384,
"image_width": 384,
"batch_size": 50,
"epoch_size": 300,
"warmup_epochs": 5,
"lr": 1e-3,
"momentum": 0.9,
"weight_decay": 0.05,
"label_smooth": 0.1,
"loss_scale": 1024,
"save_checkpoint": True,
"save_checkpoint_epochs": 1,
"keep_checkpoint_max": 200,
"save_checkpoint_path": "./checkpoint",
})
config_gpu = ed({
"num_classes": 37,
"image_height": 384,
"image_width": 384,
"batch_size": 50,
"epoch_size": 300,
"warmup_epochs": 5,
"lr": 1e-3,
"momentum": 0.9,
"weight_decay": 0.05,
"label_smooth": 0.1,
"loss_scale": 1024,
"save_checkpoint": True,
"save_checkpoint_epochs": 1,
"keep_checkpoint_max": 500,
"save_checkpoint_path": "./checkpoint",
})

View File

@ -0,0 +1,97 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.py_transforms as py_transforms
import mindspore.dataset.transforms.c_transforms as c_transforms
import mindspore.dataset.vision.py_transforms as py_vision
from mindspore.dataset.vision import Inter
def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch_size=1):
"""
create a train or eval dataset
Args:
dataset_path(string): the path of dataset.
do_train(bool): whether dataset is used for train or eval.
repeat_num(int): the repeat times of dataset. Default: 1
batch_size(int): the batch size of dataset. Default: 32
Returns:
dataset
"""
if platform == "Ascend":
rank_size = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
if rank_size == 1:
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
elif platform == "GPU":
if do_train:
from mindspore.communication.management import get_rank, get_group_size
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
else:
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=False)
else:
raise ValueError("Unsupported platform.")
resize_height = config.image_height
resize_width = config.image_width
buffer_size = 1000
# define map operations
random_resize_crop_bicubic = py_vision.RandomResizedCrop(size=(resize_height, resize_width),
scale=(0.08, 1.0), ratio=(3./4., 4./3.),
interpolation=Inter.BICUBIC)
random_horizontal_flip_op = py_vision.RandomHorizontalFlip(0.5)
color_jitter = 0.4
adjust_range = (max(0, 1 - color_jitter), 1 + color_jitter)
random_color_jitter_op = py_vision.RandomColorAdjust(brightness=adjust_range,
contrast=adjust_range,
saturation=adjust_range)
decode_p = py_vision.Decode()
resize_p = py_vision.Resize(int(resize_height), interpolation=Inter.BICUBIC)
center_crop_p = py_vision.CenterCrop(resize_height)
totensor = py_vision.ToTensor()
normalize_p = py_vision.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
if do_train:
trans = py_transforms.Compose([decode_p, random_resize_crop_bicubic, random_horizontal_flip_op,
random_color_jitter_op, totensor, normalize_p])
else:
trans = py_transforms.Compose([decode_p, resize_p, center_crop_p, totensor, normalize_p])
type_cast_op = c_transforms.TypeCast(mstype.int32)
ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8)
ds = ds.map(input_columns="label_list", operations=type_cast_op, num_parallel_workers=8)
# apply shuffle operations
ds = ds.shuffle(buffer_size=buffer_size)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds

View File

@ -0,0 +1,390 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""TNT"""
import math
import copy
import numpy as np
import mindspore.common.dtype as mstype
from mindspore import nn
from mindspore.ops import operations as P
from mindspore.common.tensor import Tensor
from mindspore.common.parameter import Parameter
class MLP(nn.Cell):
"""MLP"""
def __init__(self, in_features, hidden_features=None, out_features=None, dropout=0.):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Dense(in_features, hidden_features)
self.dropout = nn.Dropout(1. - dropout)
self.fc2 = nn.Dense(hidden_features, out_features)
self.act = nn.GELU()
def construct(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.dropout(x)
x = self.fc2(x)
x = self.dropout(x)
return x
class Attention(nn.Cell):
"""Multi-head Attention"""
def __init__(self, dim, hidden_dim=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super(Attention, self).__init__()
hidden_dim = hidden_dim or dim
self.hidden_dim = hidden_dim
self.num_heads = num_heads
head_dim = hidden_dim // num_heads
self.head_dim = head_dim
self.scale = head_dim ** -0.5
self.qk = nn.Dense(dim, hidden_dim * 2, has_bias=qkv_bias)
self.v = nn.Dense(dim, hidden_dim, has_bias=qkv_bias)
self.softmax = nn.Softmax(axis=-1)
self.batmatmul_trans_b = P.BatchMatMul(transpose_b=True)
self.attn_drop = nn.Dropout(1. - attn_drop)
self.batmatmul = P.BatchMatMul()
self.proj = nn.Dense(hidden_dim, dim)
self.proj_drop = nn.Dropout(1. - proj_drop)
self.transpose = P.Transpose()
self.reshape = P.Reshape()
def construct(self, x):
"""Multi-head Attention"""
B, N, _ = x.shape
qk = self.transpose(self.reshape(self.qk(x), (B, N, 2, self.num_heads, self.head_dim)), (2, 0, 3, 1, 4))
q, k = qk[0], qk[1]
v = self.transpose(self.reshape(self.v(x), (B, N, self.num_heads, self.head_dim)), (0, 2, 1, 3))
attn = self.softmax(self.batmatmul_trans_b(q, k) * self.scale)
attn = self.attn_drop(attn)
x = self.reshape(self.transpose(self.batmatmul(attn, v), (0, 2, 1, 3)), (B, N, -1))
x = self.proj(x)
x = self.proj_drop(x)
return x
class DropConnect(nn.Cell):
"""drop connect implementation"""
def __init__(self, drop_connect_rate=0., seed0=0, seed1=0):
super(DropConnect, self).__init__()
self.shape = P.Shape()
self.dtype = P.DType()
self.keep_prob = 1 - drop_connect_rate
self.dropout = P.Dropout(keep_prob=self.keep_prob)
self.keep_prob_tensor = Tensor(self.keep_prob, dtype=mstype.float32)
def construct(self, x):
shape = self.shape(x)
dtype = self.dtype(x)
ones_tensor = P.Fill()(dtype, (shape[0], 1, 1, 1), 1)
_, mask = self.dropout(ones_tensor)
x = x * mask
x = x / self.keep_prob_tensor
return x
class Pixel2Patch(nn.Cell):
"""Projecting Pixel Embedding to Patch Embedding"""
def __init__(self, outer_dim):
super(Pixel2Patch, self).__init__()
self.norm_proj = nn.LayerNorm([outer_dim])
self.proj = nn.Dense(outer_dim, outer_dim)
self.fake = Parameter(Tensor(np.zeros((1, 1, outer_dim)),
mstype.float32), name='fake', requires_grad=False)
self.reshape = P.Reshape()
self.tile = P.Tile()
self.concat = P.Concat(axis=1)
def construct(self, pixel_embed, patch_embed):
B, N, _ = patch_embed.shape
proj = self.reshape(pixel_embed, (B, N - 1, -1))
proj = self.proj(self.norm_proj(proj))
proj = self.concat((self.tile(self.fake, (B, 1, 1)), proj))
patch_embed = patch_embed + proj
return patch_embed
class TNTBlock(nn.Cell):
"""TNT Block"""
def __init__(self, inner_config, outer_config, dropout=0., attn_dropout=0., drop_connect=0.):
super().__init__()
# inner transformer
inner_dim = inner_config['dim']
num_heads = inner_config['num_heads']
mlp_ratio = inner_config['mlp_ratio']
self.inner_norm1 = nn.LayerNorm([inner_dim])
self.inner_attn = Attention(inner_dim, num_heads=num_heads, qkv_bias=True, attn_drop=attn_dropout,
proj_drop=dropout)
self.inner_norm2 = nn.LayerNorm([inner_dim])
self.inner_mlp = MLP(inner_dim, int(inner_dim * mlp_ratio), dropout=dropout)
# outer transformer
outer_dim = outer_config['dim']
num_heads = outer_config['num_heads']
mlp_ratio = outer_config['mlp_ratio']
self.outer_norm1 = nn.LayerNorm([outer_dim])
self.outer_attn = Attention(outer_dim, num_heads=num_heads, qkv_bias=True, attn_drop=attn_dropout,
proj_drop=dropout)
self.outer_norm2 = nn.LayerNorm([outer_dim])
self.outer_mlp = MLP(outer_dim, int(outer_dim * mlp_ratio), dropout=dropout)
# pixel2patch
self.pixel2patch = Pixel2Patch(outer_dim)
# assistant
self.drop_connect = DropConnect(drop_connect)
self.reshape = P.Reshape()
self.tile = P.Tile()
self.concat = P.Concat(axis=1)
def construct(self, pixel_embed, patch_embed):
"""TNT Block"""
pixel_embed = pixel_embed + self.inner_attn(self.inner_norm1(pixel_embed))
pixel_embed = pixel_embed + self.inner_mlp(self.inner_norm2(pixel_embed))
patch_embed = self.pixel2patch(pixel_embed, patch_embed)
patch_embed = patch_embed + self.outer_attn(self.outer_norm1(patch_embed))
patch_embed = patch_embed + self.outer_mlp(self.outer_norm2(patch_embed))
return pixel_embed, patch_embed
def _get_clones(module, N):
"""get_clones"""
return nn.CellList([copy.deepcopy(module) for i in range(N)])
class TNTEncoder(nn.Cell):
"""TNT"""
def __init__(self, encoder_layer, num_layers):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
def construct(self, pixel_embed, patch_embed):
"""TNT"""
for layer in self.layers:
pixel_embed, patch_embed = layer(pixel_embed, patch_embed)
return pixel_embed, patch_embed
class _stride_unfold_(nn.Cell):
"""Unfold with stride"""
def __init__(
self, kernel_size, stride=-1):
super(_stride_unfold_, self).__init__()
if stride == -1:
self.stride = kernel_size
else:
self.stride = stride
self.kernel_size = kernel_size
self.reshape = P.Reshape()
self.transpose = P.Transpose()
self.unfold = _unfold_(kernel_size)
def construct(self, x):
"""TNT"""
N, C, H, W = x.shape
leftup_idx_x = []
leftup_idx_y = []
nh = int((H - self.kernel_size) / self.stride + 1)
nw = int((W - self.kernel_size) / self.stride + 1)
for i in range(nh):
leftup_idx_x.append(i * self.stride)
for i in range(nw):
leftup_idx_y.append(i * self.stride)
NumBlock_x = len(leftup_idx_x)
NumBlock_y = len(leftup_idx_y)
zeroslike = P.ZerosLike()
cc_2 = P.Concat(axis=2)
cc_3 = P.Concat(axis=3)
unf_x = P.Zeros()((N, C, NumBlock_x * self.kernel_size,
NumBlock_y * self.kernel_size), mstype.float32)
N, C, H, W = unf_x.shape
for i in range(NumBlock_x):
for j in range(NumBlock_y):
unf_i = i * self.kernel_size
unf_j = j * self.kernel_size
org_i = leftup_idx_x[i]
org_j = leftup_idx_y[j]
fill = x[:, :, org_i:org_i + self.kernel_size,
org_j:org_j + self.kernel_size]
unf_x += cc_3((cc_3((zeroslike(unf_x[:, :, :, :unf_j]),
cc_2((cc_2((zeroslike(unf_x[:, :, :unf_i, unf_j:unf_j + self.kernel_size]), fill)),
zeroslike(unf_x[:, :, unf_i + self.kernel_size:,
unf_j:unf_j + self.kernel_size]))))),
zeroslike(unf_x[:, :, :, unf_j + self.kernel_size:])))
y = self.unfold(unf_x)
return y
class _unfold_(nn.Cell):
"""Unfold"""
def __init__(
self, kernel_size, stride=-1):
super(_unfold_, self).__init__()
if stride == -1:
self.stride = kernel_size
self.kernel_size = kernel_size
self.reshape = P.Reshape()
self.transpose = P.Transpose()
def construct(self, x):
"""TNT"""
N, C, H, W = x.shape
numH = int(H / self.kernel_size)
numW = int(W / self.kernel_size)
if numH * self.kernel_size != H or numW * self.kernel_size != W:
x = x[:, :, :numH * self.kernel_size, :, numW * self.kernel_size]
output_img = self.reshape(x, (N, C, numH, self.kernel_size, W))
output_img = self.transpose(output_img, (0, 1, 2, 4, 3))
output_img = self.reshape(output_img, (N, C, int(
numH * numW), self.kernel_size, self.kernel_size))
output_img = self.transpose(output_img, (0, 2, 1, 4, 3))
output_img = self.reshape(output_img, (N, int(numH * numW), -1))
return output_img
class PixelEmbed(nn.Cell):
"""Image to Pixel Embedding"""
def __init__(self, img_size, patch_size=16, in_channels=3, embedding_dim=768, stride=4):
super(PixelEmbed, self).__init__()
self.num_patches = (img_size // patch_size) * (img_size // patch_size)
new_patch_size = math.ceil(patch_size / stride)
self.new_patch_size = new_patch_size
self.inner_dim = embedding_dim // new_patch_size // new_patch_size
self.proj = nn.Conv2d(in_channels, self.inner_dim, kernel_size=7, pad_mode='pad',
padding=3, stride=stride, has_bias=True)
self.unfold = _unfold_(kernel_size=new_patch_size)
self.reshape = P.Reshape()
self.transpose = P.Transpose()
def construct(self, x):
B = x.shape[0]
x = self.proj(x) # B, C, H, W
x = self.unfold(x) # B, N, Ck2
x = self.reshape(x, (B * self.num_patches, self.inner_dim, -1)) # B*N, C, M
x = self.transpose(x, (0, 2, 1)) # B*N, M, C
return x
class TNT(nn.Cell):
"""TNT"""
def __init__(
self,
img_size,
patch_size,
num_channels,
embedding_dim,
num_heads,
num_layers,
hidden_dim,
num_class,
stride=4,
dropout=0,
attn_dropout=0,
drop_connect=0.1
):
super(TNT, self).__init__()
assert embedding_dim % num_heads == 0
assert img_size % patch_size == 0
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.patch_size = patch_size
self.num_channels = num_channels
self.img_size = img_size
self.num_patches = int((img_size // patch_size) ** 2)
new_patch_size = math.ceil(patch_size / stride)
inner_dim = embedding_dim // new_patch_size // new_patch_size
self.patch_pos = Parameter(Tensor(np.random.rand(1, self.num_patches + 1, embedding_dim),
mstype.float32), name='patch_pos', requires_grad=True)
self.pixel_pos = Parameter(Tensor(np.random.rand(1, inner_dim, new_patch_size * new_patch_size),
mstype.float32), name='pixel_pos', requires_grad=True)
self.cls_token = Parameter(Tensor(np.random.rand(1, 1, embedding_dim),
mstype.float32), requires_grad=True)
self.patch_embed = Parameter(Tensor(np.zeros((1, self.num_patches, embedding_dim)),
mstype.float32), name='patch_embed', requires_grad=False)
self.fake = Parameter(Tensor(np.zeros((1, 1, embedding_dim)),
mstype.float32), name='fake', requires_grad=False)
self.pos_drop = nn.Dropout(1. - dropout)
self.pixel_embed = PixelEmbed(img_size, patch_size, num_channels, embedding_dim, stride)
self.pixel2patch = Pixel2Patch(embedding_dim)
inner_config = {'dim': inner_dim, 'num_heads': 4, 'mlp_ratio': 4}
outer_config = {'dim': embedding_dim, 'num_heads': num_heads, 'mlp_ratio': hidden_dim / embedding_dim}
encoder_layer = TNTBlock(inner_config, outer_config, dropout=dropout, attn_dropout=attn_dropout,
drop_connect=drop_connect)
self.encoder = TNTEncoder(encoder_layer, num_layers)
self.head = nn.SequentialCell(
nn.LayerNorm([embedding_dim]),
nn.Dense(embedding_dim, num_class)
)
self.add = P.TensorAdd()
self.reshape = P.Reshape()
self.concat = P.Concat(axis=1)
self.tile = P.Tile()
self.transpose = P.Transpose()
def construct(self, x):
"""TNT"""
B, _, _, _ = x.shape
pixel_embed = self.pixel_embed(x)
pixel_embed = pixel_embed + self.transpose(self.pixel_pos, (0, 2, 1)) # B*N, M, C
patch_embed = self.concat((self.cls_token, self.patch_embed))
patch_embed = self.tile(patch_embed, (B, 1, 1))
patch_embed = self.pos_drop(patch_embed + self.patch_pos)
patch_embed = self.pixel2patch(pixel_embed, patch_embed)
pixel_embed, patch_embed = self.encoder(pixel_embed, patch_embed)
y = self.head(patch_embed[:, 0])
return y
def tnt_b(num_class):
return TNT(img_size=384,
patch_size=16,
num_channels=3,
embedding_dim=640,
num_heads=10,
num_layers=12,
hidden_dim=640*4,
stride=4,
num_class=num_class)