forked from mindspore-Ecosystem/mindspore
!18870 Fix the formula display problem and some other formatting problems
Merge pull request !18870 from dinglinhe/code_docs_dlh_ms_I3XSH3
This commit is contained in:
commit
765c03e53f
|
@ -1260,7 +1260,7 @@ class GraphKernel(Cell):
|
||||||
flags (dict) : Set graph flags. Default: None.
|
flags (dict) : Set graph flags. Default: None.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> class Relu(nn.GraphKernel):
|
>>> class Relu(nn.GraphKernel):
|
||||||
|
|
|
@ -124,7 +124,7 @@ class LogSoftmax(Cell):
|
||||||
ValueError: If `axis` is not in range [-len(x), len(x)).
|
ValueError: If `axis` is not in range [-len(x), len(x)).
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
||||||
|
|
|
@ -250,7 +250,7 @@ class CellList(_CellListBase, Cell):
|
||||||
args (list, optional): List of subclass of Cell.
|
args (list, optional): List of subclass of Cell.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> conv = nn.Conv2d(100, 20, 3)
|
>>> conv = nn.Conv2d(100, 20, 3)
|
||||||
|
|
|
@ -309,7 +309,7 @@ class BatchNorm1d(_BatchNorm):
|
||||||
Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out})`.
|
Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out})`.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
TypeError: If `num_features` is not an int.
|
TypeError: If `num_features` is not an int.
|
||||||
|
|
|
@ -333,7 +333,7 @@ class MAELoss(Loss):
|
||||||
``Ascend`` ``GPU`` ``CPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
# Case 1: logits.shape = labels.shape = (3,)
|
>>> # Case 1: logits.shape = labels.shape = (3,)
|
||||||
>>> loss = nn.MAELoss()
|
>>> loss = nn.MAELoss()
|
||||||
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
|
>>> logits = Tensor(np.array([1, 2, 3]), mindspore.float32)
|
||||||
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
|
>>> labels = Tensor(np.array([1, 2, 2]), mindspore.float32)
|
||||||
|
|
|
@ -47,7 +47,7 @@ class OcclusionSensitivity(Metric):
|
||||||
Default: None.
|
Default: None.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Example:
|
Example:
|
||||||
>>> import numpy as np
|
>>> import numpy as np
|
||||||
|
|
|
@ -287,7 +287,7 @@ class Adam(Optimizer):
|
||||||
ValueError: If `weight_decay` is less than 0.
|
ValueError: If `weight_decay` is less than 0.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> net = Net()
|
>>> net = Net()
|
||||||
|
@ -430,7 +430,7 @@ class AdamWeightDecay(Optimizer):
|
||||||
ValueError: If `weight_decay` is less than 0.
|
ValueError: If `weight_decay` is less than 0.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> net = Net()
|
>>> net = Net()
|
||||||
|
|
|
@ -91,7 +91,7 @@ class LARS(Optimizer):
|
||||||
Union[Tensor[bool], tuple[Parameter]], it depends on the output of `optimizer`.
|
Union[Tensor[bool], tuple[Parameter]], it depends on the output of `optimizer`.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend``
|
``Ascend`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> net = Net()
|
>>> net = Net()
|
||||||
|
|
|
@ -110,7 +110,7 @@ class SGD(Optimizer):
|
||||||
ValueError: If the momentum, dampening or weight_decay value is less than 0.0.
|
ValueError: If the momentum, dampening or weight_decay value is less than 0.0.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend`` ``GPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> net = Net()
|
>>> net = Net()
|
||||||
|
|
|
@ -1165,7 +1165,7 @@ class Neg(PrimitiveWithInfer):
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **x** (Tensor) - The input tensor whose dtype is number.
|
- **x** (Tensor) - The input tensor whose dtype is number.
|
||||||
:math:`(N,*)` where :math:`*` means ,any number of additional dimensions, its rank should less than 8.
|
:math:`(N,*)` where :math:`*` means ,any number of additional dimensions, its rank should less than 8.
|
||||||
|
|
||||||
Outputs:
|
Outputs:
|
||||||
Tensor, has the same shape and dtype as input.
|
Tensor, has the same shape and dtype as input.
|
||||||
|
@ -1581,7 +1581,7 @@ class Sqrt(PrimitiveWithCheck):
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **x** (Tensor) - The input tensor whose dtype is number.
|
- **x** (Tensor) - The input tensor whose dtype is number.
|
||||||
:math:`(N,*)` where :math:`*` means ,any number of additional dimensions, its rank should less than 8.
|
:math:`(N,*)` where :math:`*` means ,any number of additional dimensions, its rank should less than 8.
|
||||||
|
|
||||||
Outputs:
|
Outputs:
|
||||||
Tensor, has the same shape and data type as the `x`.
|
Tensor, has the same shape and data type as the `x`.
|
||||||
|
@ -2345,7 +2345,7 @@ class FloorDiv(_MathBinaryOp):
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
out_{i} = \text{floor}( \frac{x_i}{y_i})
|
out_{i} = \\text{floor}( \\frac{x_i}{y_i})
|
||||||
|
|
||||||
where the :math:`floor` indicates the operator that converts the input data into the floor data type.
|
where the :math:`floor` indicates the operator that converts the input data into the floor data type.
|
||||||
|
|
||||||
|
@ -3294,11 +3294,11 @@ class LogicalNot(PrimitiveWithInfer):
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
out_{i} = \neg x_{i}
|
out_{i} = \\neg x_{i}
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **x** (Tensor) - The input tensor whose dtype is bool.
|
- **x** (Tensor) - The input tensor whose dtype is bool.
|
||||||
:math:`(N,*)` where :math:`*` means,any number of additional dimensions.
|
:math:`(N,*)` where :math:`*` means,any number of additional dimensions.
|
||||||
|
|
||||||
Outputs:
|
Outputs:
|
||||||
Tensor, the shape is the same as the `x`, and the dtype is bool.
|
Tensor, the shape is the same as the `x`, and the dtype is bool.
|
||||||
|
@ -3399,7 +3399,7 @@ class LogicalOr(_LogicBinaryOp):
|
||||||
|
|
||||||
.. math::
|
.. math::
|
||||||
|
|
||||||
out_{i} = x_{i} \vee y_{i}
|
out_{i} = x_{i} \\vee y_{i}
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **x** (Union[Tensor, bool]) - The first input is a bool or a tensor whose data type is bool.
|
- **x** (Union[Tensor, bool]) - The first input is a bool or a tensor whose data type is bool.
|
||||||
|
|
Loading…
Reference in New Issue