forked from mindspore-Ecosystem/mindspore
!37370 [assistant][ops][I4CRJB/I4CRJC] Add ArgmaxV2 and ArgminV3
Merge pull request !37370 from chenchen/argmax
This commit is contained in:
commit
73e4469181
|
@ -43,6 +43,8 @@ std::map<string, std::vector<std::pair<string, size_t>>> AicpuOpAttrToInputMap =
|
|||
{prim::kPrimReduceProd->name(), {{"axis", 1}}},
|
||||
{prim::kPrimReverseV2->name(), {{"axis", 1}}},
|
||||
{prim::kPrimBroadcastTo->name(), {{"shape", 1}}},
|
||||
{prim::kPrimArgMax->name(), {{"axis", 1}}},
|
||||
{prim::kPrimArgMin->name(), {{"axis", 1}}},
|
||||
{prim::kPrimUnsortedSegmentProd->name(), {{"num_segments", 2}}},
|
||||
{prim::kPrimUnsortedSegmentSum->name(), {{"num_segments", 2}}}};
|
||||
|
||||
|
|
|
@ -171,6 +171,8 @@ constexpr auto kZerosLike = "ZerosLike";
|
|||
constexpr auto kEqual = "Equal";
|
||||
constexpr auto kOnesLike = "OnesLike";
|
||||
constexpr auto kSign = "Sign";
|
||||
constexpr auto kArgmax = "Argmax";
|
||||
constexpr auto kArgmin = "Argmin";
|
||||
|
||||
const std::set<std::string> kCpuKernelOps{kIdentity,
|
||||
kMaskedSelect,
|
||||
|
@ -295,7 +297,9 @@ const std::map<std::string, std::string> kOpNameToAicpuOpNameMap{
|
|||
{kTensorScatterElements, "ScatterElements"},
|
||||
{kACos, "Acos"},
|
||||
{kHSigmoid, "HardSigmoid"},
|
||||
{kHSigmoidGrad, "HardSigmoidGrad"}};
|
||||
{kHSigmoidGrad, "HardSigmoidGrad"},
|
||||
{kArgmax, "ArgMax"},
|
||||
{kArgmin, "ArgMin"}};
|
||||
struct AicpuParamHead {
|
||||
uint32_t length; // Total length: include cunstom message
|
||||
uint32_t ioAddrNum; // Input and output address number
|
||||
|
|
|
@ -126,7 +126,9 @@ PrimShapeDependMap &GetHostDependsMap() {
|
|||
static const auto &kTraceGrad = prim::kPrimTraceGrad->name();
|
||||
static const auto &kSetSize = prim::kPrimSetSize->name();
|
||||
// Common host depends.
|
||||
static PrimShapeDependMap host_depends{{kExtractGlimpse, ShapeSet{1}},
|
||||
static PrimShapeDependMap host_depends{{prim::kPrimArgMax->name(), ShapeSet{1}},
|
||||
{prim::kPrimArgMin->name(), ShapeSet{1}},
|
||||
{kExtractGlimpse, ShapeSet{1}},
|
||||
{kSegmentMax, ShapeSet{1}},
|
||||
{kSegmentMin, ShapeSet{1}},
|
||||
{kSegmentSum, ShapeSet{1}},
|
||||
|
|
|
@ -15,6 +15,8 @@
|
|||
*/
|
||||
|
||||
#include "ops/arg_max.h"
|
||||
|
||||
#include <set>
|
||||
#include "mindapi/ir/type.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "ops/op_utils.h"
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -53,6 +53,7 @@ class MIND_API Argmax : public BaseOperator {
|
|||
};
|
||||
abstract::AbstractBasePtr ArgMaxInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<abstract::AbstractBasePtr> &input_args);
|
||||
using PrimArgMax = std::shared_ptr<Argmax>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -53,6 +53,7 @@ class MIND_API ArgMin : public BaseOperator {
|
|||
};
|
||||
abstract::AbstractBasePtr ArgMinInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<abstract::AbstractBasePtr> &input_args);
|
||||
using PrimArgMin = std::shared_ptr<ArgMin>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -0,0 +1,75 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Argmax op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
arg_max_info = AiCPURegOp("Argmax") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("cust_aicpu", "str") \
|
||||
.input(0, "x", "required") \
|
||||
.input(1, "dimension", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(arg_max_info)
|
||||
def _arg_max_aicpu():
|
||||
"""Argmax aicpu register"""
|
||||
return
|
|
@ -0,0 +1,75 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Argmin op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
arg_min_info = AiCPURegOp("Argmin") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.attr("cust_aicpu", "str") \
|
||||
.input(0, "x", "required") \
|
||||
.input(1, "dimension", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(arg_min_info)
|
||||
def _arg_min_aicpu():
|
||||
"""Argmin aicpu register"""
|
||||
return
|
|
@ -1999,12 +1999,35 @@ class InvertPermutation(PrimitiveWithInfer):
|
|||
'value': tuple(y)}
|
||||
|
||||
|
||||
class Argmax(PrimitiveWithInfer):
|
||||
class Argmax(Primitive):
|
||||
"""
|
||||
Returns the indices of the maximum value of a tensor across the axis.
|
||||
|
||||
Refer to :func:`mindspore.ops.argmax` for more detail.
|
||||
|
||||
If the shape of input tensor is :math:`(x_1, ..., x_N)`, the shape of the output tensor will be
|
||||
:math:`(x_1, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
|
||||
|
||||
Args:
|
||||
axis (int): Axis where the Argmax operation applies to. Default: -1.
|
||||
output_type (:class:`mindspore.dtype`): An optional data type of `mindspore.dtype.int32` and
|
||||
`mindspore.dtype.int64`. Default: `mindspore.dtype.int32`.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Input tensor. :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
|
||||
Support data type list as follows:
|
||||
|
||||
- Ascend: Float16, Float32, Float64, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64.
|
||||
- GPU: Float16, Float32.
|
||||
- CPU: Float16, Float32, Float64.
|
||||
|
||||
Outputs:
|
||||
Tensor, whose dtype is determined by `output_type`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `axis` is not an int.
|
||||
TypeError: If `output_type` is neither int32 nor int64.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
|
@ -2020,25 +2043,10 @@ class Argmax(PrimitiveWithInfer):
|
|||
"""Initialize Argmax"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
||||
validator.check_value_type("axis", axis, [int], self.name)
|
||||
validator.check_types_same_and_valid({'output': output_type}, [mstype.int32], self.name)
|
||||
validator.check_types_same_and_valid({'output': output_type}, [mstype.int32, mstype.int64], self.name)
|
||||
self.axis = axis
|
||||
self.add_prim_attr('output_type', output_type)
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
axis = self.axis
|
||||
if axis is None:
|
||||
axis = 0
|
||||
x_rank = len(x_shape)
|
||||
validator.check_int_range(axis, -x_rank, x_rank, Rel.INC_LEFT, "axis", self.name)
|
||||
axis = axis + x_rank if axis < 0 else axis
|
||||
ouput_shape = [x_shape[i] for i in range(x_rank) if i != axis]
|
||||
return ouput_shape
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_dtype_valid("input_x", x_dtype, [mstype.float16, mstype.float32, mstype.float64],
|
||||
self.name)
|
||||
return mstype.tensor_type(self.output_type)
|
||||
|
||||
|
||||
class Argmin(Primitive):
|
||||
"""
|
||||
|
@ -2049,15 +2057,17 @@ class Argmin(Primitive):
|
|||
|
||||
Args:
|
||||
axis (int): Axis where the Argmin operation applies to. Default: -1.
|
||||
output_type (:class:`mindspore.dtype`): An optional data type of `mindspore.dtype.int32`.
|
||||
Default: `mindspore.dtype.int32`.
|
||||
output_type (:class:`mindspore.dtype`): An optional data type of `mindspore.dtype.int32` and
|
||||
`mindspore.dtype.int64`. Default: `mindspore.dtype.int32`.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Input tensor.
|
||||
The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
|
||||
|
||||
- Ascend: Float16, Float32, Float64, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64.
|
||||
|
||||
Outputs:
|
||||
Tensor, indices of the min value of input tensor across the axis.
|
||||
Tensor, whose dtype is determined by `output_type`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `axis` is not an int.
|
||||
|
|
Loading…
Reference in New Issue