forked from mindspore-Ecosystem/mindspore
clean pylint
This commit is contained in:
parent
c1813671db
commit
73642ef3d3
|
@ -61,6 +61,7 @@ class Vgg(nn.Cell):
|
|||
|
||||
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1):
|
||||
super(Vgg, self).__init__()
|
||||
_ = batch_size
|
||||
self.layers = _make_layer(base, batch_norm=batch_norm)
|
||||
self.flatten = nn.Flatten()
|
||||
self.classifier = nn.SequentialCell([
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
# ============================================================================
|
||||
"""FTRL"""
|
||||
from mindspore.ops import functional as F, composite as C, operations as P
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common import Tensor
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore._checkparam import Validator as validator
|
||||
|
|
|
@ -110,8 +110,8 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, para
|
|||
|
||||
def _check_param_value(decay_steps, warmup_steps, start_learning_rate,
|
||||
end_learning_rate, power, beta1, beta2, eps, weight_decay, prim_name):
|
||||
|
||||
"""Check the type of inputs."""
|
||||
_ = warmup_steps
|
||||
validator.check_float_positive('start_learning_rate', start_learning_rate, prim_name)
|
||||
validator.check_float_legal_value('start_learning_rate', start_learning_rate, prim_name)
|
||||
validator.check_float_positive('end_learning_rate', end_learning_rate, prim_name)
|
||||
|
|
|
@ -173,8 +173,8 @@ test_sets = [
|
|||
embedding_size=768,
|
||||
embedding_shape=[1, 128, 768],
|
||||
use_one_hot_embeddings=True,
|
||||
initializer_range=0.02), 1, 1), {
|
||||
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
|
||||
initializer_range=0.02), 1, 1),
|
||||
{'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
|
||||
'desc_inputs': [input_ids],
|
||||
'desc_bprop': [[128]]}),
|
||||
('EmbeddingLookup_multi_outputs_init_param', {
|
||||
|
@ -182,8 +182,8 @@ test_sets = [
|
|||
embedding_size=768,
|
||||
embedding_shape=[1, 128, 768],
|
||||
use_one_hot_embeddings=False,
|
||||
initializer_range=0.02), {
|
||||
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
|
||||
initializer_range=0.02),
|
||||
{'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
|
||||
'desc_inputs': [input_ids],
|
||||
'desc_bprop': [[1, 128, 768], [128]]}),
|
||||
('EmbeddingLookup_multi_outputs_grad_with_no_sens', {
|
||||
|
@ -191,8 +191,8 @@ test_sets = [
|
|||
embedding_size=768,
|
||||
embedding_shape=[1, 128, 768],
|
||||
use_one_hot_embeddings=False,
|
||||
initializer_range=0.02), {
|
||||
'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
|
||||
initializer_range=0.02),
|
||||
{'init_param_with': lambda shp: np.ones(shp).astype(np.float32)}),
|
||||
'desc_inputs': [input_ids]}),
|
||||
('GetMaskedLMOutput_grad_with_no_sens', {
|
||||
'block': GetMaskedLMOutput(BertConfig(batch_size=1)),
|
||||
|
|
|
@ -69,6 +69,7 @@ class IthOutputCell(nn.Cell):
|
|||
return predict
|
||||
|
||||
def get_output_cell(network, num_input, output_index, training=True):
|
||||
_ = num_input
|
||||
net = IthOutputCell(network, output_index)
|
||||
set_block_training(net, training)
|
||||
return net
|
||||
|
|
Loading…
Reference in New Issue