forked from mindspore-Ecosystem/mindspore
!15458 [GraphKernel]expanders of some fusion ops
From: @wenfangpei Reviewed-by: @ckey_dou,@gaoxiong1 Signed-off-by: @ckey_dou
This commit is contained in:
commit
71ab230aa0
|
@ -49,3 +49,5 @@ from .tanh_grad import TanhGrad
|
|||
from .tile import Tile
|
||||
from .lamb_apply_optimizer_assign import LambApplyOptimizerAssign
|
||||
from .lamb_apply_weight_assign import LambApplyWeightAssign
|
||||
from .softmax_grad_ext import SoftmaxGradExt
|
||||
from .square_sum_v1 import SquareSumV1
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ===========================================================================
|
||||
"""generate json desc for SoftmaxGradExt"""
|
||||
from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
||||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
from ._utils import infer_shape_from_fractalNz, get_reduced_ori_shape, to_frac_z_axis
|
||||
|
||||
@VLD.add_format(DF.FRAC_NZ, DF.FRAC_NZ, DF.DEFAULT)
|
||||
@VLD.add_format(DF.DEFAULT, DF.DEFAULT, DF.DEFAULT)
|
||||
@VLD.check_attrs('axis')
|
||||
class SoftmaxGradExt(Expander):
|
||||
"""SoftmaxGradExt expander"""
|
||||
|
||||
def _expand(self, graph_builder):
|
||||
x, y, z = self.inputs
|
||||
axis = self.attrs['axis']
|
||||
|
||||
ori_shape = x.shape
|
||||
if x.data_format == DF.FRAC_NZ:
|
||||
ori_shape = infer_shape_from_fractalNz(ori_shape)
|
||||
if not axis:
|
||||
axis = []
|
||||
for i, _ in enumerate(ori_shape):
|
||||
axis.append(i)
|
||||
else:
|
||||
if isinstance(axis, int):
|
||||
axis = [axis]
|
||||
for i, _ in enumerate(list(axis)):
|
||||
if axis[i] < 0:
|
||||
axis[i] += len(ori_shape)
|
||||
|
||||
ori_reduced_shape = ori_shape
|
||||
if x.data_format == DF.FRAC_NZ:
|
||||
ori_reduced_shape = get_reduced_ori_shape(ori_shape, axis)
|
||||
axis = to_frac_z_axis(ori_shape, axis)
|
||||
|
||||
data_mul = graph_builder.emit('Mul', [x, y])
|
||||
data_sum = graph_builder.emit('ReduceSum', [data_mul],
|
||||
attrs={'reduce_axis': axis, 'keep_dims': True, 'reduce_output_fuse': True})
|
||||
if x.data_format == DF.FRAC_NZ:
|
||||
data_sum = graph_builder.emit('Reshape', [data_sum], attrs={'shape': ori_reduced_shape})
|
||||
data_sub = graph_builder.emit('Sub', [x, data_sum])
|
||||
data_mul2 = graph_builder.emit('Mul', [data_sub, y])
|
||||
result = graph_builder.emit('Mul', [data_mul2, z])
|
||||
return result
|
|
@ -0,0 +1,53 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ===========================================================================
|
||||
"""generate json desc for SquareSumV1"""
|
||||
from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
||||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
from ._utils import infer_shape_from_fractalNz, get_reduced_ori_shape, to_frac_z_axis
|
||||
|
||||
@VLD.add_format(DF.FRAC_NZ)
|
||||
@VLD.add_format(DF.DEFAULT)
|
||||
@VLD.check_attrs('axis')
|
||||
class SquareSumV1(Expander):
|
||||
"""Square expander"""
|
||||
|
||||
def _expand(self, graph_builder):
|
||||
x = self.inputs[0]
|
||||
axis = self.attrs['axis']
|
||||
|
||||
ori_shape = x.shape
|
||||
if x.data_format == DF.FRAC_NZ:
|
||||
ori_shape = infer_shape_from_fractalNz(ori_shape)
|
||||
if not axis:
|
||||
axis = []
|
||||
for i, _ in enumerate(ori_shape):
|
||||
axis.append(i)
|
||||
else:
|
||||
if isinstance(axis, int):
|
||||
axis = [axis]
|
||||
for i, _ in enumerate(list(axis)):
|
||||
if axis[i] < 0:
|
||||
axis[i] += len(ori_shape)
|
||||
|
||||
ori_reduced_shape = ori_shape
|
||||
if x.data_format == DF.FRAC_NZ:
|
||||
ori_reduced_shape = get_reduced_ori_shape(ori_shape, axis)
|
||||
axis = to_frac_z_axis(ori_shape, axis)
|
||||
|
||||
square_res = graph_builder.emit('Mul', [x, x])
|
||||
result = graph_builder.emit('ReduceSum', [square_res], attrs={'reduce_axis': axis, 'keep_dims': True})
|
||||
if x.data_format == DF.FRAC_NZ:
|
||||
result = graph_builder.emit('Reshape', [result], attrs={'shape': ori_reduced_shape})
|
||||
return result
|
|
@ -59,6 +59,8 @@ std::vector<PrimitivePtr> GetExpandOps() {
|
|||
prim::kPrimClipByNormNoDivSum,
|
||||
prim::kLambApplyOptimizerAssign,
|
||||
prim::kLambApplyWeightAssign,
|
||||
prim::kSoftmaxGradExt,
|
||||
prim::kSquareSumV1,
|
||||
#elif ENABLE_GPU
|
||||
prim::kPrimBiasAdd,
|
||||
prim::kPrimFusedAdam,
|
||||
|
|
|
@ -314,6 +314,8 @@ inline const PrimitivePtr kPrimL2Normalize = std::make_shared<Primitive>("L2Norm
|
|||
inline const PrimitivePtr kPrimCustomExtractFeatures = std::make_shared<Primitive>("CustomExtractFeatures");
|
||||
inline const PrimitivePtr kLambApplyOptimizerAssign = std::make_shared<Primitive>("LambApplyOptimizerAssign");
|
||||
inline const PrimitivePtr kLambApplyWeightAssign = std::make_shared<Primitive>("LambApplyWeightAssign");
|
||||
inline const PrimitivePtr kSoftmaxGradExt = std::make_shared<Primitive>("SoftmaxGradExt");
|
||||
inline const PrimitivePtr kSquareSumV1 = std::make_shared<Primitive>("SquareSumV1");
|
||||
|
||||
// Comm ops
|
||||
inline const PrimitivePtr kPrimMirror = std::make_shared<Primitive>("_MirrorOperator");
|
||||
|
|
Loading…
Reference in New Issue