diff --git a/docs/api/api_python/mindspore.ops.functional.rst b/docs/api/api_python/mindspore.ops.functional.rst index f980f5446cc..6b5ba949636 100644 --- a/docs/api/api_python/mindspore.ops.functional.rst +++ b/docs/api/api_python/mindspore.ops.functional.rst @@ -73,6 +73,8 @@ functional算子是经过初始化后的Primitive,可以直接作为函数使 mindspore.ops.bessel_j1 mindspore.ops.bessel_k0 mindspore.ops.bessel_k0e + mindspore.ops.bessel_y0 + mindspore.ops.bessel_y1 mindspore.ops.bitwise_and mindspore.ops.bitwise_or mindspore.ops.bitwise_xor diff --git a/docs/api/api_python/ops/mindspore.ops.func_bessel_y0.rst b/docs/api/api_python/ops/mindspore.ops.func_bessel_y0.rst new file mode 100644 index 00000000000..be33e14beb8 --- /dev/null +++ b/docs/api/api_python/ops/mindspore.ops.func_bessel_y0.rst @@ -0,0 +1,19 @@ +mindspore.ops.bessel_y0 +===================== + +.. py:class:: mindspore.ops.bessel_y0 + + 逐元素计算并返回输入Tensor的Bessel y0函数值 + + **输入:** + + - **x** (Tensor) - 任意维度的Tensor。数据类型应为float16,float32或float64。 + + **输出:** + + Tensor,shape和数据类型与 `x` 相同。 + + **异常:** + + - **TypeError** - `x`不是Tensor。 + - **TypeError** - `x`的数据类型不是float16,float32或float64。 diff --git a/docs/api/api_python/ops/mindspore.ops.func_bessel_y1.rst b/docs/api/api_python/ops/mindspore.ops.func_bessel_y1.rst new file mode 100644 index 00000000000..7cccf658ef2 --- /dev/null +++ b/docs/api/api_python/ops/mindspore.ops.func_bessel_y1.rst @@ -0,0 +1,19 @@ +mindspore.ops.bessel_y1 +===================== + +.. py:class:: mindspore.ops.bessel_y1 + + 逐元素计算并返回输入Tensor的Bessel y1函数值 + + **输入:** + + - **x** (Tensor) - 任意维度的Tensor。数据类型应为float16,float32或float64。 + + **输出:** + + Tensor,shape和数据类型与 `x` 相同。 + + **异常:** + + - **TypeError** - `x`不是Tensor。 + - **TypeError** - `x`的数据类型不是float16,float32或float64。 diff --git a/docs/api/api_python_en/mindspore.ops.functional.rst b/docs/api/api_python_en/mindspore.ops.functional.rst index 27b7a93356c..76f323239a0 100644 --- a/docs/api/api_python_en/mindspore.ops.functional.rst +++ b/docs/api/api_python_en/mindspore.ops.functional.rst @@ -73,6 +73,8 @@ Element-by-Element Operations mindspore.ops.bessel_j1 mindspore.ops.bessel_k0 mindspore.ops.bessel_k0e + mindspore.ops.bessel_y0 + mindspore.ops.bessel_y1 mindspore.ops.bitwise_and mindspore.ops.bitwise_or mindspore.ops.bitwise_xor diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y0_cpu_kernel.cc b/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y0_cpu_kernel.cc new file mode 100644 index 00000000000..fcb2f5c7fce --- /dev/null +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y0_cpu_kernel.cc @@ -0,0 +1,205 @@ +/** + * Copyright 2019-2022 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include +#include +#include "plugin/device/cpu/kernel/bessel_y0_cpu_kernel.h" +#include "plugin/device/cpu/hal/device/cpu_device_address.h" +#include "plugin/device/cpu/kernel/bessel_j0_cpu_kernel.h" +#include "mindspore/core/ops/bessel_y0.h" +#include "abstract/utils.h" + +namespace mindspore { +namespace kernel { +namespace { +constexpr size_t kBesselY0InputsNum = 1; +constexpr size_t kBesselY0OutputsNum = 1; +} // namespace + +double BesselY0CpuKernelMod::polevl(double x, const double coef[], int N) { + double ans; + int i; + const double *p; + + p = coef; + ans = *p++; + i = N; + + do { + ans = ans * x + *p++; + } while (--i); + + return (ans); +} + +double BesselY0CpuKernelMod::p1evl(double x, const double coef[], int N) { + double ans; + const double *p; + int i; + + p = coef; + ans = x + *p++; + i = N - 1; + + do { + ans = ans * x + *p++; + } while (--i); + + return (ans); +} + +double BesselY0CpuKernelMod::y0(double x) { + const double PP[] = { + 7.96936729297347051624E-4, 8.28352392107440799803E-2, 1.23953371646414299388E0, 5.44725003058768775090E0, + 8.74716500199817011941E0, 5.30324038235394892183E0, 9.99999999999999997821E-1, + }; + + const double PQ[] = { + 9.24408810558863637013E-4, 8.56288474354474431428E-2, 1.25352743901058953537E0, 5.47097740330417105182E0, + 8.76190883237069594232E0, 5.30605288235394617618E0, 1.00000000000000000218E0, + }; + + const double QP[] = { + -1.13663838898469149931E-2, -1.28252718670509318512E0, -1.95539544257735972385E1, -9.32060152123768231369E1, + -1.77681167980488050595E2, -1.47077505154951170175E2, -5.14105326766599330220E1, -6.05014350600728481186E0, + }; + + const double QQ[] = { + 6.43178256118178023184E1, 8.56430025976980587198E2, 3.88240183605401609683E3, 7.24046774195652478189E3, + 5.93072701187316984827E3, 2.06209331660327847417E3, 2.42005740240291393179E2, + }; + + const double YP[] = { + 1.55924367855235737965E4, -1.46639295903971606143E7, 5.43526477051876500413E9, -9.82136065717911466409E11, + 8.75906394395366999549E13, -3.46628303384729719441E15, 4.42733268572569800351E16, -1.84950800436986690637E16, + }; + + const double YQ[] = { + 1.04128353664259848412E3, 6.26107330137134956842E5, 2.68919633393814121987E8, 8.64002487103935000337E10, + 2.02979612750105546709E13, 3.17157752842975028269E15, 2.50596256172653059228E17, + }; + + const double PIO4 = .78539816339744830962; + const double SQ2OPI = .79788456080286535588; + const double NPY_2_PI = 0.6366197723675814; + const double BAR = 5.0; + const double ZERO = 0.0; + const double FIVE = 5.0; + const double FIVE_SQUARED = 25.0; + const int DEG_P = 6; + const int DEG_Q = 7; + + double z, p, w, q, xn; + if (x <= BAR) { + if (x == ZERO) { + return -INFINITY; + } else if (x < ZERO) { + return NAN; + } + z = x * x; + w = polevl(z, YP, DEG_Q) / p1evl(z, YQ, DEG_Q); + w += NPY_2_PI * log(x) * BesselJ0CpuKernelMod::j0(x); + return (w); + } + + w = FIVE / x; + z = FIVE_SQUARED / (x * x); + p = polevl(z, PP, DEG_P) / polevl(z, PQ, DEG_P); + q = polevl(z, QP, DEG_Q) / p1evl(z, QQ, DEG_Q); + xn = x - PIO4; + p = p * sin(xn) + w * q * cos(xn); + return (p * SQ2OPI / sqrt(x)); +} + +template +void BesselY0CpuKernelMod::BesselY0Func(const T *input, T *output, size_t start, size_t end) { + for (size_t i = start; i < end; i++) { + double input_ = static_cast(input[i]); + double output_ = y0(input_); + output[i] = static_cast(output_); + } +} + +bool BesselY0CpuKernelMod::Init(const BaseOperatorPtr &base_operator, const std::vector &inputs, + const std::vector &outputs) { + auto kernel_ptr = std::dynamic_pointer_cast(base_operator); + if (!kernel_ptr) { + MS_LOG(ERROR) << "For 'BesselY0CpuKernelMod', BaseOperatorPtr can not dynamic cast to BesselY0 before initialize!"; + return false; + } + kernel_name_ = kernel_ptr->name(); + if (inputs.size() != kBesselY0InputsNum || outputs.size() != kBesselY0OutputsNum) { + MS_LOG(ERROR) << "For '" << kernel_name_ << "': input and output size should be " << kBesselY0InputsNum << " and " + << kBesselY0OutputsNum << ", but get " << inputs.size() << " and " << outputs.size(); + return false; + } + + input_shape_ = inputs[0]->GetShapeVector(); + output_shape_ = outputs[0]->GetShapeVector(); + input_dtype_ = inputs[0]->GetDtype(); + input_size_ = std::accumulate(input_shape_.begin(), input_shape_.end(), 1, std::multiplies()); + + switch (input_dtype_) { + case kNumberTypeFloat64: + kernel_func_ = &BesselY0CpuKernelMod::LaunchKernel; + break; + case kNumberTypeFloat32: + kernel_func_ = &BesselY0CpuKernelMod::LaunchKernel; + break; + case kNumberTypeFloat16: + kernel_func_ = &BesselY0CpuKernelMod::LaunchKernel; + break; + default: + MS_LOG(ERROR) << "BesselY0 kernel does not support " << TypeIdToString(input_dtype_); + return false; + } + return true; +} + +int BesselY0CpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const std::vector &inputs, + const std::vector &outputs, + const std::map &others) { + int ret = 0; + if ((ret = NativeCpuKernelMod::Resize(base_operator, inputs, outputs, others)) != 0) { + MS_LOG(WARNING) << kernel_name_ << " reinit failed."; + return ret; + } + return 0; +} + +template +bool BesselY0CpuKernelMod::LaunchKernel(const std::vector &inputs, + const std::vector &outputs) { + const auto *input = reinterpret_cast(inputs[0]->addr); + auto output = reinterpret_cast(outputs[0]->addr); + + auto end = inputs[0]->size / sizeof(T); + auto task = std::bind(BesselY0Func, input, output, 0, end); + ParallelLaunchAutoSearch(task, input_size_, this, ¶llel_search_info_); + + return true; +} + +std::vector BesselY0CpuKernelMod::GetOpSupport() { + std::vector support_list = { + KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), + KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), + KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16)}; + return support_list; +} + +MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, BesselY0, BesselY0CpuKernelMod); +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y0_cpu_kernel.h b/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y0_cpu_kernel.h new file mode 100644 index 00000000000..1331833c251 --- /dev/null +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y0_cpu_kernel.h @@ -0,0 +1,65 @@ +/** + * Copyright 2019-2022 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_BESSEL_Y0_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_BESSEL_Y0_CPU_KERNEL_H_ + +#include +#include +#include +#include "plugin/device/cpu/kernel/cpu_kernel.h" +#include "plugin/factory/ms_factory.h" + +namespace mindspore { +namespace kernel { +class BesselY0CpuKernelMod : public NativeCpuKernelMod { + public: + BesselY0CpuKernelMod() = default; + ~BesselY0CpuKernelMod() override = default; + + bool Init(const BaseOperatorPtr &base_operator, const std::vector &inputs, + const std::vector &outputs) override; + int Resize(const BaseOperatorPtr &base_operator, const std::vector &inputs, + const std::vector &outputs, + const std::map &others = std::map()) override; + bool Launch(const std::vector &inputs, const std::vector &, + const std::vector &outputs) override { + return kernel_func_(this, inputs, outputs); + } + static double polevl(double x, const double coef[], int N); + static double p1evl(double x, const double coef[], int N); + static double y0(double x); + template + static void BesselY0Func(const T *input, T *output, size_t start, size_t end); + + protected: + std::vector GetOpSupport() override; + + private: + template + bool LaunchKernel(const std::vector &inputs, const std::vector &outputs); + using BesselKernel = std::function &, + const std::vector &)>; + BesselKernel kernel_func_; + + size_t input_size_; + std::vector input_shape_; + std::vector output_shape_; + TypeId input_dtype_; +}; +} // namespace kernel +} // namespace mindspore +#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_BESSEL_Y0_CPU_KERNEL_H_ diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y1_cpu_kernel.cc b/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y1_cpu_kernel.cc new file mode 100644 index 00000000000..4d8588e11e4 --- /dev/null +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y1_cpu_kernel.cc @@ -0,0 +1,209 @@ +/** + * Copyright 2019-2022 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include +#include +#include +#include "plugin/device/cpu/kernel/bessel_y1_cpu_kernel.h" +#include "plugin/device/cpu/kernel/bessel_j1_cpu_kernel.h" +#include "plugin/device/cpu/hal/device/cpu_device_address.h" +#include "mindspore/core/ops/bessel_y1.h" +#include "abstract/utils.h" + +namespace mindspore { +namespace kernel { +namespace { +constexpr size_t kBesselY1InputsNum = 1; +constexpr size_t kBesselY1OutputsNum = 1; +} // namespace + +double BesselY1CpuKernelMod::polevl(double x, const double coef[], int N) { + double ans; + int i; + const double *p; + + p = coef; + ans = *p++; + i = N; + + do { + ans = ans * x + *p++; + } while (--i); + + return (ans); +} + +double BesselY1CpuKernelMod::p1evl(double x, const double coef[], int N) { + double ans; + const double *p; + int i; + + p = coef; + ans = x + *p++; + i = N - 1; + + do { + ans = ans * x + *p++; + } while (--i); + + return (ans); +} + +double BesselY1CpuKernelMod::y1(double x) { + const double PP[7] = { + 7.62125616208173112003E-4, 7.31397056940917570436E-2, 1.12719608129684925192E0, 5.11207951146807644818E0, + 8.42404590141772420927E0, 5.21451598682361504063E0, 1.00000000000000000254E0, + }; + + const double PQ[7] = { + 5.71323128072548699714E-4, 6.88455908754495404082E-2, 1.10514232634061696926E0, 5.07386386128601488557E0, + 8.39985554327604159757E0, 5.20982848682361821619E0, 9.99999999999999997461E-1, + }; + + const double QP[8] = { + 5.10862594750176621635E-2, 4.98213872951233449420E0, 7.58238284132545283818E1, 3.66779609360150777800E2, + 7.10856304998926107277E2, 5.97489612400613639965E2, 2.11688757100572135698E2, 2.52070205858023719784E1, + }; + + const double QQ[8] = { + 1.00000000000000000000E0, 7.42373277035675149943E1, 1.05644886038262816351E3, 4.98641058337653607651E3, + 9.56231892404756170795E3, 7.99704160447350683650E3, 2.82619278517639096600E3, 3.36093607810698293419E2, + }; + + const double YP[6] = { + 1.26320474790178026440E9, -6.47355876379160291031E11, 1.14509511541823727583E14, + -8.12770255501325109621E15, 2.02439475713594898196E17, -7.78877196265950026825E17, + }; + + const double YQ[9] = { + 1.00000000000000000000E0, 5.94301592346128195359E2, 2.35564092943068577943E5, + 7.34811944459721705660E7, 1.87601316108706159478E10, 3.88231277496238566008E12, + 6.20557727146953693363E14, 6.87141087355300489866E16, 3.97270608116560655612E18, + }; + + const double NPY_2_PI = 0.6366197723675814; + const double THPIO4 = 2.35619449019234492885; + const double SQ2OPI = .79788456080286535588; + const double BAR = 5.0; + const double ZERO = 0.0; + const double ONE = 1.0; + const int DEG_P = 6; + const int DEG_Q = 7; + const int DEG_5 = 5; + const int DEG_8 = 8; + + double w, z, p, q, xn; + + if (x <= BAR) { + if (x == ZERO) { + return -INFINITY; + } else if (x < ZERO) { + return NAN; + } + z = x * x; + w = x * (polevl(z, YP, DEG_5) / polevl(z, YQ, DEG_8)); + w += NPY_2_PI * (BesselJ1CpuKernelMod::j1(x) * log(x) - ONE / x); + return (w); + } + + w = BAR / x; + z = w * w; + p = polevl(z, PP, DEG_P) / polevl(z, PQ, DEG_P); + q = polevl(z, QP, DEG_Q) / p1evl(z, QQ, DEG_Q); + xn = x - THPIO4; + p = p * sin(xn) + w * q * cos(xn); + return (p * SQ2OPI / sqrt(x)); +} + +template +void BesselY1CpuKernelMod::BesselY1Func(const T *input, T *output, size_t start, size_t end) { + for (size_t i = start; i < end; i++) { + double input_ = static_cast(input[i]); + double output_ = y1(input_); + output[i] = static_cast(output_); + } +} + +bool BesselY1CpuKernelMod::Init(const BaseOperatorPtr &base_operator, const std::vector &inputs, + const std::vector &outputs) { + auto kernel_ptr = std::dynamic_pointer_cast(base_operator); + if (!kernel_ptr) { + MS_LOG(ERROR) << "For 'BesselY1CpuKernelMod', BaseOperatorPtr can not dynamic cast to BesselY1 before initialize!"; + return false; + } + kernel_name_ = kernel_ptr->name(); + if (inputs.size() != kBesselY1InputsNum || outputs.size() != kBesselY1OutputsNum) { + MS_LOG(ERROR) << "For '" << kernel_name_ << "': input and output size should be " << kBesselY1InputsNum << " and " + << kBesselY1OutputsNum << ", but get " << inputs.size() << " and " << outputs.size(); + return false; + } + + input_shape_ = inputs[0]->GetShapeVector(); + output_shape_ = outputs[0]->GetShapeVector(); + input_dtype_ = inputs[0]->GetDtype(); + input_size_ = std::accumulate(input_shape_.begin(), input_shape_.end(), 1, std::multiplies()); + + switch (input_dtype_) { + case kNumberTypeFloat64: + kernel_func_ = &BesselY1CpuKernelMod::LaunchKernel; + break; + case kNumberTypeFloat32: + kernel_func_ = &BesselY1CpuKernelMod::LaunchKernel; + break; + case kNumberTypeFloat16: + kernel_func_ = &BesselY1CpuKernelMod::LaunchKernel; + break; + default: + MS_LOG(ERROR) << "BesselY1 kernel does not support " << TypeIdToString(input_dtype_); + return false; + } + return true; +} + +int BesselY1CpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const std::vector &inputs, + const std::vector &outputs, + const std::map &others) { + int ret = 0; + if ((ret = NativeCpuKernelMod::Resize(base_operator, inputs, outputs, others)) != 0) { + MS_LOG(WARNING) << kernel_name_ << " reinit failed."; + return ret; + } + return 0; +} + +template +bool BesselY1CpuKernelMod::LaunchKernel(const std::vector &inputs, + const std::vector &outputs) { + const auto *input = reinterpret_cast(inputs[0]->addr); + auto output = reinterpret_cast(outputs[0]->addr); + + auto end = inputs[0]->size / sizeof(T); + auto task = std::bind(BesselY1Func, input, output, 0, end); + ParallelLaunchAutoSearch(task, input_size_, this, ¶llel_search_info_); + + return true; +} + +std::vector BesselY1CpuKernelMod::GetOpSupport() { + std::vector support_list = { + KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64), + KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), + KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16)}; + return support_list; +} + +MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, BesselY1, BesselY1CpuKernelMod); +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y1_cpu_kernel.h b/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y1_cpu_kernel.h new file mode 100644 index 00000000000..f4d6553c79f --- /dev/null +++ b/mindspore/ccsrc/plugin/device/cpu/kernel/bessel_y1_cpu_kernel.h @@ -0,0 +1,65 @@ +/** + * Copyright 2019-2022 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_BESSEL_Y1_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_BESSEL_Y1_CPU_KERNEL_H_ + +#include +#include +#include +#include "plugin/device/cpu/kernel/cpu_kernel.h" +#include "plugin/factory/ms_factory.h" + +namespace mindspore { +namespace kernel { +class BesselY1CpuKernelMod : public NativeCpuKernelMod { + public: + BesselY1CpuKernelMod() = default; + ~BesselY1CpuKernelMod() override = default; + + bool Init(const BaseOperatorPtr &base_operator, const std::vector &inputs, + const std::vector &outputs) override; + int Resize(const BaseOperatorPtr &base_operator, const std::vector &inputs, + const std::vector &outputs, + const std::map &others = std::map()) override; + bool Launch(const std::vector &inputs, const std::vector &, + const std::vector &outputs) override { + return kernel_func_(this, inputs, outputs); + } + static double polevl(double x, const double coef[], int N); + static double p1evl(double x, const double coef[], int N); + static double y1(double x); + template + static void BesselY1Func(const T *input, T *output, size_t start, size_t end); + + protected: + std::vector GetOpSupport() override; + + private: + template + bool LaunchKernel(const std::vector &inputs, const std::vector &outputs); + using BesselKernel = std::function &, + const std::vector &)>; + BesselKernel kernel_func_; + + size_t input_size_; + std::vector input_shape_; + std::vector output_shape_; + TypeId input_dtype_; +}; +} // namespace kernel +} // namespace mindspore +#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_BESSEL_Y1_CPU_KERNEL_H_ diff --git a/mindspore/core/ops/bessel_y0.cc b/mindspore/core/ops/bessel_y0.cc new file mode 100644 index 00000000000..a7297dff691 --- /dev/null +++ b/mindspore/core/ops/bessel_y0.cc @@ -0,0 +1,58 @@ +/** + * Copyright 2022 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "ops/bessel_y0.h" + +#include +#include + +#include "ops/op_utils.h" +#include "utils/check_convert_utils.h" +#include "abstract/ops/primitive_infer_map.h" +#include "mindapi/src/helper.h" + +namespace mindspore { +namespace ops { +namespace { +abstract::ShapePtr BesselY0InferShape(const PrimitivePtr &primitive, const std::vector &input_args) { + auto in_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->GetShapeTrack())[kShape]; + return std::make_shared(in_shape); +} +TypePtr BesselY0InferType(const PrimitivePtr &prim, const std::vector &input_args) { + auto x_type = input_args[kInputIndex0]->BuildType(); + const std::set valid_types = {kFloat16, kFloat32, kFloat64}; + (void)CheckAndConvertUtils::CheckTensorTypeValid("x", x_type, valid_types, prim->name()); + return x_type; +} +} // namespace + +MIND_API_OPERATOR_IMPL(BesselY0, BaseOperator); +AbstractBasePtr BesselY0Infer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive, + const std::vector &input_args) { + MS_EXCEPTION_IF_NULL(primitive); + const int64_t kInputNum = 1; + (void)CheckAndConvertUtils::CheckInteger("input number", SizeToLong(input_args.size()), kEqual, kInputNum, + primitive->name()); + for (const auto &item : input_args) { + MS_EXCEPTION_IF_NULL(item); + } + auto infer_type = BesselY0InferType(primitive, input_args); + auto infer_shape = BesselY0InferShape(primitive, input_args); + return abstract::MakeAbstract(infer_shape, infer_type); +} + +REGISTER_PRIMITIVE_EVAL_IMPL(BesselY0, prim::kPrimBesselY0, BesselY0Infer, nullptr, true); +} // namespace ops +} // namespace mindspore diff --git a/mindspore/core/ops/bessel_y0.h b/mindspore/core/ops/bessel_y0.h new file mode 100644 index 00000000000..4f606ae6bc4 --- /dev/null +++ b/mindspore/core/ops/bessel_y0.h @@ -0,0 +1,44 @@ +/** + * Copyright 2022 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef MINDSPORE_CORE_OPS_BESSEL_Y0_H_ +#define MINDSPORE_CORE_OPS_BESSEL_Y0_H_ + +#include +#include +#include +#include + +#include "ops/base_operator.h" +#include "mindapi/base/types.h" + +namespace mindspore { +namespace ops { +constexpr auto kNameBesselY0 = "BesselY0"; + +/// \brief BesselY0 is used to compute bessel y0 value for input tensor. +/// \note Param x type must be float16, float32 or float64. +class MIND_API BesselY0 : public BaseOperator { + public: + MIND_API_BASE_MEMBER(BesselY0); + /// \brief Constructor. + BesselY0() : BaseOperator(kNameBesselY0) { InitIOName({"x"}, {"output"}); } +}; + +abstract::AbstractBasePtr BesselY0Infer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive, + const std::vector &input_args); +} // namespace ops +} // namespace mindspore +#endif // MINDSPORE_CORE_OPS_Bessel_Y0_H_ diff --git a/mindspore/core/ops/bessel_y1.cc b/mindspore/core/ops/bessel_y1.cc new file mode 100644 index 00000000000..0f5b1e80362 --- /dev/null +++ b/mindspore/core/ops/bessel_y1.cc @@ -0,0 +1,58 @@ +/** + * Copyright 2022 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "ops/bessel_y1.h" + +#include +#include + +#include "ops/op_utils.h" +#include "utils/check_convert_utils.h" +#include "abstract/ops/primitive_infer_map.h" +#include "mindapi/src/helper.h" + +namespace mindspore { +namespace ops { +namespace { +abstract::ShapePtr BesselY1InferShape(const PrimitivePtr &primitive, const std::vector &input_args) { + auto in_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->GetShapeTrack())[kShape]; + return std::make_shared(in_shape); +} +TypePtr BesselY1InferType(const PrimitivePtr &prim, const std::vector &input_args) { + auto x_type = input_args[kInputIndex0]->BuildType(); + const std::set valid_types = {kFloat16, kFloat32, kFloat64}; + (void)CheckAndConvertUtils::CheckTensorTypeValid("x", x_type, valid_types, prim->name()); + return x_type; +} +} // namespace + +MIND_API_OPERATOR_IMPL(BesselY1, BaseOperator); +AbstractBasePtr BesselY1Infer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive, + const std::vector &input_args) { + MS_EXCEPTION_IF_NULL(primitive); + const int64_t kInputNum = 1; + (void)CheckAndConvertUtils::CheckInteger("input number", SizeToLong(input_args.size()), kEqual, kInputNum, + primitive->name()); + for (const auto &item : input_args) { + MS_EXCEPTION_IF_NULL(item); + } + auto infer_type = BesselY1InferType(primitive, input_args); + auto infer_shape = BesselY1InferShape(primitive, input_args); + return abstract::MakeAbstract(infer_shape, infer_type); +} + +REGISTER_PRIMITIVE_EVAL_IMPL(BesselY1, prim::kPrimBesselY1, BesselY1Infer, nullptr, true); +} // namespace ops +} // namespace mindspore diff --git a/mindspore/core/ops/bessel_y1.h b/mindspore/core/ops/bessel_y1.h new file mode 100644 index 00000000000..347b97cc86f --- /dev/null +++ b/mindspore/core/ops/bessel_y1.h @@ -0,0 +1,44 @@ +/** + * Copyright 2022 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef MINDSPORE_CORE_OPS_BESSEL_Y1_H_ +#define MINDSPORE_CORE_OPS_BESSEL_Y1_H_ + +#include +#include +#include +#include + +#include "ops/base_operator.h" +#include "mindapi/base/types.h" + +namespace mindspore { +namespace ops { +constexpr auto kNameBesselY1 = "BesselY1"; + +/// \brief BesselY1 is used to compute bessel y1 value for input tensor. +/// \note Param x type must be float16, float32 or float64. +class MIND_API BesselY1 : public BaseOperator { + public: + MIND_API_BASE_MEMBER(BesselY1); + /// \brief Constructor. + BesselY1() : BaseOperator(kNameBesselY1) { InitIOName({"x"}, {"output"}); } +}; + +abstract::AbstractBasePtr BesselY1Infer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive, + const std::vector &input_args); +} // namespace ops +} // namespace mindspore +#endif // MINDSPORE_CORE_OPS_Bessel_Y1_H_ diff --git a/mindspore/core/ops/core_ops.h b/mindspore/core/ops/core_ops.h index 0f013877544..9fb04c655fb 100644 --- a/mindspore/core/ops/core_ops.h +++ b/mindspore/core/ops/core_ops.h @@ -458,6 +458,8 @@ GVAR_DEF(PrimitivePtr, kPrimBesselI0e, std::make_shared("BesselI0e")) GVAR_DEF(PrimitivePtr, kPrimBesselI1e, std::make_shared("BesselI1e")); GVAR_DEF(PrimitivePtr, kPrimBesselJ0, std::make_shared("BesselJ0")); GVAR_DEF(PrimitivePtr, kPrimBesselJ1, std::make_shared("BesselJ1")); +GVAR_DEF(PrimitivePtr, kPrimBesselY0, std::make_shared("BesselY0")); +GVAR_DEF(PrimitivePtr, kPrimBesselY1, std::make_shared("BesselY1")); GVAR_DEF(PrimitivePtr, kPrimTanhGrad, std::make_shared("TanhGrad")); GVAR_DEF(PrimitivePtr, kPrimPooling, std::make_shared("Pooling")); GVAR_DEF(PrimitivePtr, kPrimPoolingGrad, std::make_shared("PoolingGrad")); diff --git a/mindspore/python/mindspore/ops/_vmap/vmap_math_ops.py b/mindspore/python/mindspore/ops/_vmap/vmap_math_ops.py index 7f1467f624f..8b031fb27a3 100644 --- a/mindspore/python/mindspore/ops/_vmap/vmap_math_ops.py +++ b/mindspore/python/mindspore/ops/_vmap/vmap_math_ops.py @@ -303,3 +303,5 @@ get_unop_vmap_rule = vmap_rules_getters.register(P.BesselI0)(get_unop_vmap_rule) get_unop_vmap_rule = vmap_rules_getters.register(P.BesselI0e)(get_unop_vmap_rule) get_unop_vmap_rule = vmap_rules_getters.register(P.BesselK0)(get_unop_vmap_rule) get_unop_vmap_rule = vmap_rules_getters.register(P.BesselK0e)(get_unop_vmap_rule) +get_unop_vmap_rule = vmap_rules_getters.register(P.BesselY0)(get_unop_vmap_rule) +get_unop_vmap_rule = vmap_rules_getters.register(P.BesselY1)(get_unop_vmap_rule) diff --git a/mindspore/python/mindspore/ops/function/__init__.py b/mindspore/python/mindspore/ops/function/__init__.py index 9073e0c2370..d352dfa9c3d 100644 --- a/mindspore/python/mindspore/ops/function/__init__.py +++ b/mindspore/python/mindspore/ops/function/__init__.py @@ -34,7 +34,7 @@ from .math_func import (addn, absolute, abs, tensor_add, add, neg_tensor, neg, t log, maximum, invert, minimum, floor, logical_not, logical_or, logical_and, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, atan2, bitwise_and, bitwise_or, bitwise_xor, erf, erfc, cdist, bessel_i0, bessel_i0e, bessel_j0, bessel_j1, bessel_k0, - bessel_k0e) + bessel_k0e, bessel_y0, bessel_y1) __all__ = [] __all__.extend(array_func.__all__) diff --git a/mindspore/python/mindspore/ops/function/math_func.py b/mindspore/python/mindspore/ops/function/math_func.py index bb195941c35..26accd2e468 100644 --- a/mindspore/python/mindspore/ops/function/math_func.py +++ b/mindspore/python/mindspore/ops/function/math_func.py @@ -1536,6 +1536,62 @@ def bessel_k0e(x): return bessel_k0e_(x) +bessel_y0_ = P.BesselY0() +def bessel_y0(x): + r""" + Computes the Bessel y0 function of x element-wise. + + Args: + x (Tensor): The input tensor. The data type must be float16, float32 or float64. + :math:`(N,*)` where :math:`*` means, any number of additional dimensions. + + Returns: + Tensor, has the same shape and dtype as the `x`. + + Raises: + TypeError: If `x` is not a Tensor. + TypeError: If dtype of `x` is not float16, float32 or float64. + + Supported Platforms: + ``CPU`` + + Examples: + >>> x = Tensor(np.array([0.5, 1., 2., 4.]), mindspore.float32) + >>> output = ops.bessel_y0(x) + >>> print(output) + [-0.44451874 0.08825696 0.51037567 -0.01694074] + """ + return bessel_y0_(x) + + +bessel_y1_ = P.BesselY1() +def bessel_y1(x): + r""" + Computes the Bessel y1 function of x element-wise. + + Args: + x (Tensor): The input tensor. The data type must be float16, float32 or float64. + :math:`(N,*)` where :math:`*` means, any number of additional dimensions. + + Returns: + Tensor, has the same shape and dtype as the `x`. + + Raises: + TypeError: If `x` is not a Tensor. + TypeError: If dtype of `x` is not float16, float32 or float64. + + Supported Platforms: + ``CPU`` + + Examples: + >>> x = Tensor(np.array([0.5, 1., 2., 4.]), mindspore.float32) + >>> output = ops.bessel_y1(x) + >>> print(output) + [-1.47147239 -0.78121282 -0.10703243 0.39792571] + """ + return bessel_y1_(x) + + ##################################### # Comparison Operation Functions. ##################################### @@ -2198,6 +2254,8 @@ __all__ = [ 'bessel_i0', 'bessel_i0e', 'bessel_k0', - 'bessel_k0e' + 'bessel_k0e', + 'bessel_y0', + 'bessel_y1' ] __all__.sort() diff --git a/mindspore/python/mindspore/ops/operations/__init__.py b/mindspore/python/mindspore/ops/operations/__init__.py index 976eaddf145..03b7ec18d31 100644 --- a/mindspore/python/mindspore/ops/operations/__init__.py +++ b/mindspore/python/mindspore/ops/operations/__init__.py @@ -75,7 +75,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A Sin, Sqrt, Rsqrt, BesselI0, BesselI1, BesselI0e, BesselI1e, TruncateDiv, TruncateMod, Addcdiv, Addcmul, Square, Sub, TensorAdd, Add, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan, MatrixInverse, IndexAdd, Erfinv, Conj, Real, Imag, Complex, Trunc, IsClose, LuSolve, - CholeskyInverse, BesselJ0, BesselJ1, BesselK0, BesselK0e) + CholeskyInverse, BesselJ0, BesselJ1, BesselK0, BesselK0e, BesselY0, BesselY1) from .nn_ops import (LSTM, SGD, Adam, AdamWeightDecay, FusedSparseAdam, FusedSparseLazyAdam, AdamNoUpdateParam, ApplyMomentum, BatchNorm, BiasAdd, Conv2D, Conv3D, Conv2DTranspose, Conv3DTranspose, DepthwiseConv2dNative, diff --git a/mindspore/python/mindspore/ops/operations/math_ops.py b/mindspore/python/mindspore/ops/operations/math_ops.py index fbf0efe97c8..ef90695f41b 100644 --- a/mindspore/python/mindspore/ops/operations/math_ops.py +++ b/mindspore/python/mindspore/ops/operations/math_ops.py @@ -4769,6 +4769,70 @@ class BesselJ1(Primitive): self.init_prim_io_names(inputs=['x'], outputs=['output']) +class BesselY0(Primitive): + """ + Computes BesselY0 of input element-wise. + + Inputs: + - **x** (Tensor) - The shape of tensor is + :math:`(N,*)` where :math:`*` means, any number of additional dimensions. + Data type must be float16, float32 or float64. + + Outputs: + Tensor, has the same shape as `x`. + + Raises: + TypeError: If `x` is not a Tensor of float16, float32. + + Supported Platforms: + ``CPU`` + + Examples: + >>> bessel_y0 = ops.BesselY0() + >>> x = Tensor(np.array([0.5, 1., 2., 4.]), mindspore.float32) + >>> output = bessel_y0(x) + >>> print(output) + [-0.44451873 0.08825696 0.51037567 -0.01694074] + """ + + @prim_attr_register + def __init__(self): + """Initialize BesselY0""" + self.init_prim_io_names(inputs=['x'], outputs=['output']) + + +class BesselY1(Primitive): + """ + Computes BesselY1 of input element-wise. + + Inputs: + - **x** (Tensor) - The shape of tensor is + :math:`(N,*)` where :math:`*` means, any number of additional dimensions. + Data type must be float16, float32 or float64. + + Outputs: + Tensor, has the same shape as `x`. + + Raises: + TypeError: If `x` is not a Tensor of float16, float32. + + Supported Platforms: + ``CPU`` + + Examples: + >>> bessel_y1 = ops.BesselY1() + >>> x = Tensor(np.array([0.5, 1., 2., 4.]), mindspore.float32) + >>> output = bessel_y1(x) + >>> print(output) + [-1.47147239 -0.78121282 -0.10703243 0.39792571] + """ + + @prim_attr_register + def __init__(self): + """Initialize BesselY1""" + self.init_prim_io_names(inputs=['x'], outputs=['output']) + + class Inv(Primitive): r""" Computes Reciprocal of input tensor element-wise. diff --git a/tests/st/ops/cpu/test_bessel.py b/tests/st/ops/cpu/test_bessel.py index 9973b25660e..238c61e0f9a 100755 --- a/tests/st/ops/cpu/test_bessel.py +++ b/tests/st/ops/cpu/test_bessel.py @@ -139,3 +139,43 @@ def test_bessel_k0e(dtype, eps): output = F.bessel_k0e(x) diff = output.asnumpy() - expect assert np.all(diff < error) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +@pytest.mark.parametrize('dtype, eps', [(np.float16, 1.0e-3), (np.float32, 1.0e-6), (np.float64, 1.0e-6)]) +def test_bessel_y0(dtype, eps): + """ + Feature: bessel y0 function + Description: test cases for BesselY0 + Expectation: the result matches scipy + """ + x = Tensor(np.array([0.5, 1., 2., 4.]).astype(dtype)) + expect = np.array([-0.44451874, 0.08825696, 0.51037567, -0.01694074]).astype(dtype) + error = np.ones(shape=[4]) * eps + context.set_context(mode=context.GRAPH_MODE, device_target="CPU") + + output = F.bessel_y0(x) + diff = output.asnumpy() - expect + assert np.all(diff < error) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +@pytest.mark.parametrize('dtype, eps', [(np.float16, 1.0e-3), (np.float32, 1.0e-6), (np.float64, 1.0e-6)]) +def test_bessel_y1(dtype, eps): + """ + Feature: bessel y1 function + Description: test cases for BesselY1 + Expectation: the result matches scipy + """ + x = Tensor(np.array([0.5, 1., 2., 4.]).astype(dtype)) + expect = np.array([-1.47147239, -0.78121282, -0.10703243, 0.39792571]).astype(dtype) + error = np.ones(shape=[4]) * eps + context.set_context(mode=context.GRAPH_MODE, device_target="CPU") + + output = F.bessel_y1(x) + diff = output.asnumpy() - expect + assert np.all(diff < error)