forked from mindspore-Ecosystem/mindspore
fix some issues
This commit is contained in:
parent
3c17465db9
commit
6f124e3111
|
@ -16,6 +16,9 @@ mindspore.nn.Conv2d
|
|||
此时,输入Tensor对应的 `data_format` 为"NCHW",完整卷积核的shape为 :math:`(C_{out}, C_{in} / \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]})` ,其中 `group` 是在空间维度上分割输入 `x` 的组数。如果输入Tensor对应的 `data_format` 为"NHWC",完整卷积核的shape则为 :math:`(C_{out}, \text{kernel_size[0]}, \text{kernel_size[1]}), C_{in} / \text{group}`。
|
||||
详细介绍请参考论文 `Gradient Based Learning Applied to Document Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_ 。
|
||||
|
||||
.. note::
|
||||
在Ascend平台上,目前只支持深度卷积场景下的分组卷积运算。也就是说,当 `group>1` 的场景下,必须要满足 `in\_channels` = `out\_channels` = `group` 的约束条件。
|
||||
|
||||
参数:
|
||||
- **in_channels** (int) - Conv2d层输入Tensor的空间维度。
|
||||
- **out_channels** (int) - Conv2d层输出Tensor的空间维度。
|
||||
|
@ -35,9 +38,6 @@ mindspore.nn.Conv2d
|
|||
- **bias_init** (Union[Tensor, str, Initializer, numbers.Number]) - 偏置参数的初始化方法。可以使用的初始化方法与"weight_init"相同。更多细节请参考Initializer的值。默认值:"zeros"。
|
||||
- **data_format** (str) - 数据格式的可选值有"NHWC","NCHW"。默认值:"NCHW"。
|
||||
|
||||
.. note::
|
||||
在Ascend平台上,目前只支持深度卷积场景下的分组卷积运算。也就是说,当 `group>1` 的场景下,必须要满足 `in\_channels` = `out\_channels` = `group` 的约束条件。
|
||||
|
||||
输入:
|
||||
- **x** (Tensor) - Shape为 :math:`(N, C_{in}, H_{in}, W_{in})` 或者 :math:`(N, H_{in}, W_{in}, C_{in})` 的Tensor。
|
||||
|
||||
|
|
|
@ -16,6 +16,9 @@ mindspore.nn.Conv3d
|
|||
完整卷积核的shape为 :math:`(C_{out}, C_{in} / \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]}, \text{kernel_size[2]})` ,其中 `group` 是在空间维度上分割输入 `x` 的组数。
|
||||
详细介绍请参考论文 `Gradient Based Learning Applied to Document Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_ 。
|
||||
|
||||
.. note::
|
||||
在Ascend平台上,目前只支持深度卷积场景下的分组卷积运算。也就是说,当 `group>1` 的场景下,必须要满足 `in\_channels` = `out\_channels` = `group` 的约束条件。
|
||||
|
||||
参数:
|
||||
- **in_channels** (int) - Conv3d层输入Tensor的空间维度。
|
||||
- **out_channels** (int) - Conv3d层输出Tensor的空间维度。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.AddN
|
||||
===================
|
||||
|
||||
.. py:class:: mindspore.ops.AddN()
|
||||
.. py:class:: mindspore.ops.AddN
|
||||
|
||||
逐元素将所有输入的Tensor相加。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.AdjustHue
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.ops.AdjustHue()
|
||||
.. py:class:: mindspore.ops.AdjustHue
|
||||
|
||||
调整 RGB 图像的色调。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.AdjustSaturation
|
||||
==============================
|
||||
|
||||
.. py:class:: mindspore.ops.AdjustSaturation()
|
||||
.. py:class:: mindspore.ops.AdjustSaturation
|
||||
|
||||
调整 RGB 图像的饱和度。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.AffineGrid
|
||||
========================
|
||||
|
||||
.. py:class:: mindspore.ops.AffineGrid()
|
||||
.. py:class:: mindspore.ops.AffineGrid
|
||||
|
||||
给定一批仿射矩阵 theta,生成 2D 或 3D 流场(采样网格)。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselI0e
|
||||
========================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselI0e()
|
||||
.. py:class:: mindspore.ops.BesselI0e
|
||||
|
||||
逐元素计算输入数据的BesselI0e函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselI1e
|
||||
========================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselI1e()
|
||||
.. py:class:: mindspore.ops.BesselI1e
|
||||
|
||||
逐元素计算输入数据的BesselI1e函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselJ0
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselJ0()
|
||||
.. py:class:: mindspore.ops.BesselJ0
|
||||
|
||||
逐元素计算输入数据的BesselJ0函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselJ1
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselJ1()
|
||||
.. py:class:: mindspore.ops.BesselJ1
|
||||
|
||||
逐元素计算输入数据的BesselJ1函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselK0
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselK0()
|
||||
.. py:class:: mindspore.ops.BesselK0
|
||||
|
||||
逐元素计算输入数据的BesselK0函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselK0e
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselK0e()
|
||||
.. py:class:: mindspore.ops.BesselK0e
|
||||
|
||||
逐元素计算输入数据的BesselK0e函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselK1
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselK1()
|
||||
.. py:class:: mindspore.ops.BesselK1
|
||||
|
||||
逐元素计算输入数据的BesselK1函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselK1e
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselK1e()
|
||||
.. py:class:: mindspore.ops.BesselK1e
|
||||
|
||||
逐元素计算输入数据的BesselK1e函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselY0
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselY0()
|
||||
.. py:class:: mindspore.ops.BesselY0
|
||||
|
||||
逐元素计算输入数据的BesselY0函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BesselY1
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.BesselY1()
|
||||
.. py:class:: mindspore.ops.BesselY1
|
||||
|
||||
逐元素计算输入数据的BesselY1函数值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BitwiseAnd
|
||||
========================
|
||||
|
||||
.. py:class:: mindspore.ops.BitwiseAnd()
|
||||
.. py:class:: mindspore.ops.BitwiseAnd
|
||||
|
||||
逐元素执行两个Tensor的与运算。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BitwiseOr
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.ops.BitwiseOr()
|
||||
.. py:class:: mindspore.ops.BitwiseOr
|
||||
|
||||
逐元素执行两个Tensor的或运算。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.BitwiseXor
|
||||
========================
|
||||
|
||||
.. py:class:: mindspore.ops.BitwiseXor()
|
||||
.. py:class:: mindspore.ops.BitwiseXor
|
||||
|
||||
逐元素执行两个Tensor的异或运算。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Cdist
|
||||
===================
|
||||
|
||||
.. py:class:: mindspore.ops.Cdist()
|
||||
.. py:class:: mindspore.ops.Cdist
|
||||
|
||||
计算两个tensor的p-范数距离。
|
||||
|
||||
|
|
|
@ -1,18 +1,17 @@
|
|||
mindspore.ops.CheckValid
|
||||
=========================
|
||||
|
||||
.. py:class:: mindspore.ops.CheckValid()
|
||||
.. py:class:: mindspore.ops.CheckValid
|
||||
|
||||
检查边界框。
|
||||
|
||||
检查边界框的交叉数据和数据边界是否有效。
|
||||
检查由 `bboxes` 指定的一些边框是否是有效的。
|
||||
如果边框在由 `img_metas` 确定的边界内部则返回True,否则返回False。
|
||||
|
||||
.. warning::
|
||||
由 `img_metas` 指定的边界 `(长度 * 比率, 宽度 * 比率)` 需要是有效的。
|
||||
|
||||
输入:
|
||||
- **bboxes** (Tensor) - shape大小为 :math:`(N, 4)` 。 :math:`N` 表示边界框的数量, `4` 表示 `x0` 、 `x1` 、 `y0` 、 `y` 。数据类型必须是float16或float32。
|
||||
- **img_metas** (Tensor) - 原始图片的信息 `(长度, 宽度, 比率)` ,需要指定有效边界为 `(长度 * 比率, 宽度 * 比率)` 。数据类型必须是float16或float32。
|
||||
- **img_metas** (Tensor) - 原始图片的信息 `(长度, 宽度, 比率)` ,指定有效边界为 `(长度 * 比率, 宽度 * 比率)` 。数据类型必须是float16或float32。
|
||||
|
||||
输出:
|
||||
Tensor,shape为 :math:`(N,)` ,类型为bool,指出边界框是否在图片内。 `True` 表示在, `False` 表示不在。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Div
|
||||
=================
|
||||
|
||||
.. py:class:: mindspore.ops.Div()
|
||||
.. py:class:: mindspore.ops.Div
|
||||
|
||||
逐元素计算第一输入Tensor除以第二输入Tensor的商。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Eps
|
||||
=================
|
||||
|
||||
.. py:class:: mindspore.ops.Eps()
|
||||
.. py:class:: mindspore.ops.Eps
|
||||
|
||||
创建一个与输入数据类型和shape都相同的Tensor,元素值为对应数据类型能表达的最小值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Erf
|
||||
=================
|
||||
|
||||
.. py:class:: mindspore.ops.Erf()
|
||||
.. py:class:: mindspore.ops.Erf
|
||||
|
||||
逐元素计算 `x` 的高斯误差函数。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Erfc
|
||||
==================
|
||||
|
||||
.. py:class:: mindspore.ops.Erfc()
|
||||
.. py:class:: mindspore.ops.Erfc
|
||||
|
||||
逐元素计算 `x` 的互补误差函数。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Eye
|
||||
==================
|
||||
|
||||
.. py:class:: mindspore.ops.Eye()
|
||||
.. py:class:: mindspore.ops.Eye
|
||||
|
||||
创建一个主对角线上元素为1,其余元素为0的Tensor。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.FastGeLU
|
||||
========================
|
||||
|
||||
.. py:class:: mindspore.ops.FastGeLU()
|
||||
.. py:class:: mindspore.ops.FastGeLU
|
||||
|
||||
快速高斯误差线性单元激活函数。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Fill
|
||||
==================
|
||||
|
||||
.. py:class:: mindspore.ops.Fill()
|
||||
.. py:class:: mindspore.ops.Fill
|
||||
|
||||
创建一个指定shape的Tensor,并用指定值填充。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Flatten
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.Flatten()
|
||||
.. py:class:: mindspore.ops.Flatten
|
||||
|
||||
扁平化(Flatten)输入Tensor,不改变0轴的size。
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ mindspore.ops.Gamma
|
|||
|
||||
.. py:class:: mindspore.ops.Gamma(seed=0, seed2=0)
|
||||
|
||||
根据概率密度函数分布生成随机正值浮点数x:
|
||||
根据概率密度函数分布生成随机正值浮点数x。函数定义如下:
|
||||
|
||||
.. math::
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Gather
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.Gather()
|
||||
.. py:class:: mindspore.ops.Gather
|
||||
|
||||
返回输入Tensor在指定 `axis` 上 `input_indices` 索引对应的元素组成的切片。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.GeLU
|
||||
==================
|
||||
|
||||
.. py:class:: mindspore.ops.GeLU()
|
||||
.. py:class:: mindspore.ops.GeLU
|
||||
|
||||
高斯误差线性单元激活函数(Gaussian Error Linear Units activation function)。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Ger
|
||||
==================
|
||||
|
||||
.. py:class:: mindspore.ops.Ger()
|
||||
.. py:class:: mindspore.ops.Ger
|
||||
|
||||
计算两个一维Tensor的外积。即输入 `x1` 和输入 `x2` 的外积。如果 `x1` shape为 :math:`(m,)` ,`x2` shape为 :math:`(n,)` ,
|
||||
那么输出就是一个shape为 :math:`(m, n)` 的Tensor。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Greater
|
||||
=====================
|
||||
|
||||
.. py:class:: mindspore.ops.Greater()
|
||||
.. py:class:: mindspore.ops.Greater
|
||||
|
||||
按元素比较输入参数 :math:`x,y` 的值,输出结果为bool值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Inv
|
||||
=================
|
||||
|
||||
.. py:class:: mindspore.ops.Inv()
|
||||
.. py:class:: mindspore.ops.Inv
|
||||
|
||||
按元素计算输入Tensor的倒数。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.L2Loss
|
||||
====================
|
||||
|
||||
.. py:class:: mindspore.ops.L2Loss()
|
||||
.. py:class:: mindspore.ops.L2Loss
|
||||
|
||||
用于计算L2范数的一半,但不对结果进行开方操作。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.LSTM
|
||||
===================
|
||||
|
||||
.. py:class:: mindspore.ops.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout=0.0)
|
||||
.. py:class:: mindspore.ops.LSTM(input_size, hidden_size, num_layers, has_bias, bidirectional, dropout)
|
||||
|
||||
对输入执行长短期记忆(LSTM)网络。
|
||||
|
||||
|
@ -13,7 +13,7 @@ mindspore.ops.LSTM
|
|||
- **num_layers** (int) - LSTM的网络层数。
|
||||
- **has_bias** (bool) - Cell是否有偏置 `b_ih` 和 `b_hh` 。
|
||||
- **bidirectional** (bool) - 是否为双向LSTM。
|
||||
- **dropout** (float,可选) - 指的是除第一层外每层输入时的dropout概率。dropout的范围为[0.0, 1.0]。默认值:0。
|
||||
- **dropout** (float) - 指的是除第一层外每层输入时的dropout概率。dropout的范围为[0.0, 1.0]。
|
||||
|
||||
输入:
|
||||
- **input** (Tensor) - shape为 :math:`(seq\_len, batch\_size, input\_size)` 或 :math:`(batch\_size, seq\_len, input\_size)` 的Tensor。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.LessEqual
|
||||
========================
|
||||
|
||||
.. py:class:: mindspore.ops.LessEqual()
|
||||
.. py:class:: mindspore.ops.LessEqual
|
||||
|
||||
逐元素计算 :math:`x <= y` 的bool值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Log
|
||||
=================
|
||||
|
||||
.. py:class:: mindspore.ops.Log()
|
||||
.. py:class:: mindspore.ops.Log
|
||||
|
||||
逐元素返回Tensor的自然对数。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.MaskedFill
|
||||
=========================
|
||||
|
||||
.. py:class:: mindspore.ops.MaskedFill()
|
||||
.. py:class:: mindspore.ops.MaskedFill
|
||||
|
||||
将掩码位置为True的位置填充指定的值。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Mul
|
||||
=================
|
||||
|
||||
.. py:class:: mindspore.ops.Mul()
|
||||
.. py:class:: mindspore.ops.Mul
|
||||
|
||||
两个Tensor逐元素相乘。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.MultilabelMarginLoss
|
||||
==================================
|
||||
|
||||
.. py:class:: mindspore.ops.MultilabelMarginLoss(reduction='none')
|
||||
.. py:class:: mindspore.ops.MultilabelMarginLoss(reduction='mean')
|
||||
|
||||
二维卷积层。
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
mindspore.ops.Mvlgamma
|
||||
==================================
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.ops.Mvlgamma
|
||||
|
||||
|
|
|
@ -3,7 +3,9 @@ mindspore.ops.NextAfter
|
|||
|
||||
.. py:class:: mindspore.ops.NextAfter
|
||||
|
||||
返回 `x2` 方向上查找的 `x1` 的下一个可表示值的数字。
|
||||
逐元素返回 `x1` 指向 `x2` 的下一个可表示值符点值。
|
||||
|
||||
比如有两个数 :math:`a` , :math:`b` ,数据类型为float32。并且设float32数据类型的可表示值增量为 :math:`eps` 。如果 :math:`a < b` ,那么 :math:`a` 指向 :math:`b` 的下一个可表示值就是 :math:`a+eps` , :math:`b` 指向 :math:`a` 的下一个可表示值就是 :math:`b-eps` 。
|
||||
|
||||
.. math::
|
||||
out_{i} = nextafter{x1_{i}, x2_{i}}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Nonzero
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.Nonzero()
|
||||
.. py:class:: mindspore.nn.Nonzero
|
||||
|
||||
计算输入Tensor中所有非零元素的下标。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.OnesLike
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.OnesLike()
|
||||
.. py:class:: mindspore.ops.OnesLike
|
||||
|
||||
返回值为1的Tensor,shape和数据类型与输入相同。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.PReLU
|
||||
===================
|
||||
|
||||
.. py:class:: mindspore.ops.PReLU()
|
||||
.. py:class:: mindspore.ops.PReLU
|
||||
|
||||
带参数的线性修正单元激活函数(Parametric Rectified Linear Unit activation function)。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Pow
|
||||
==================
|
||||
|
||||
.. py:class:: mindspore.ops.Pow()
|
||||
.. py:class:: mindspore.ops.Pow
|
||||
|
||||
计算 `x` 中每个元素的 `y` 次幂。
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ mindspore.ops.RandomGamma
|
|||
|
||||
.. py:class:: mindspore.ops.RandomGamma(seed=0, seed2=0)
|
||||
|
||||
根据概率密度函数分布生成随机正值浮点数x:
|
||||
根据概率密度函数分布生成随机正值浮点数x。函数定义如下:
|
||||
|
||||
.. math::
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ mindspore.ops.RandomPoisson
|
|||
|
||||
.. py:class:: mindspore.ops.RandomPoisson(seed=0, seed2=0, dtype=mindspore.int64)
|
||||
|
||||
根据离散概率密度函数分布生成随机非负数浮点数i:
|
||||
根据离散概率密度函数分布生成随机非负数浮点数i。函数定义如下:
|
||||
|
||||
.. math::
|
||||
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.ReLUV2
|
||||
====================
|
||||
|
||||
.. py:class:: mindspore.ops.ReLUV2()
|
||||
.. py:class:: mindspore.ops.ReLUV2
|
||||
|
||||
ReLUV2接口已经弃用,请使用 :class:`mindspore.ops.ReLU` 替代。
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@ mindspore.ops.Receive
|
|||
- **src_rank** (int) - 标识设备rank的所需整数。
|
||||
- **shape** (list[int]) - 标识要接收的Tensor的shape的所需列表。
|
||||
- **dtype** (Type) - 标识要接收的Tensor类型的必要类型。支持的类型:int8、int16、int32、float16和float32。
|
||||
- **group** (str,可选) - 工作通信组。默认值:“hccl_world_group/nccl_world_group”。
|
||||
- **group** (str,可选) - 工作通信组。默认值:在Ascend上为“hccl_world_group”,在GPU上为”nccl_world_group”。
|
||||
|
||||
输入:
|
||||
- **input_x** (Tensor) - 输入Tensor,其shape为 :math:`(x_1, x_2, ..., x_R)` 。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Reshape
|
||||
======================
|
||||
|
||||
.. py:class:: mindspore.ops.Reshape()
|
||||
.. py:class:: mindspore.ops.Reshape
|
||||
|
||||
基于给定的shape,对输入Tensor进行重新排列。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.SeLU
|
||||
==================
|
||||
|
||||
.. py:class:: mindspore.ops.SeLU()
|
||||
.. py:class:: mindspore.ops.SeLU
|
||||
|
||||
激活函数SeLU(Scaled exponential Linear Unit)。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Sigmoid
|
||||
=====================
|
||||
|
||||
.. py:class:: mindspore.ops.Sigmoid()
|
||||
.. py:class:: mindspore.ops.Sigmoid
|
||||
|
||||
Sigmoid激活函数,逐元素计算Sigmoid激活函数。Sigmoid函数定义为:
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Sub
|
||||
=================
|
||||
|
||||
.. py:class:: mindspore.ops.Sub()
|
||||
.. py:class:: mindspore.ops.Sub
|
||||
|
||||
逐元素用第一个输入Tensor减去第二个输入Tensor。
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.Tile
|
||||
===================
|
||||
|
||||
.. py:class:: mindspore.ops.Tile()
|
||||
.. py:class:: mindspore.ops.Tile
|
||||
|
||||
按照给定的次数复制输入Tensor。
|
||||
|
||||
|
|
|
@ -13,7 +13,7 @@ mindspore.ops.TruncatedNormal
|
|||
参数:
|
||||
- **seed** (int,可选) - 随机数种子。如果 `seed` 或者 `seed2` 被设置为非零,则使用这个非零值。否则使用一个随机生成的种子。默认值:0。
|
||||
- **seed2** (int,可选) - 另一个随机种子,避免发生冲突。默认值:0。
|
||||
- **dtype** (int,可选) - 指定输出类型。可选值为:mindspore.float16、mindspore.float32和mindspore.float64。默认值:mindspore.float32。
|
||||
- **dtype** (mindspore.dtype,可选) - 指定输出类型。可选值为:mindspore.float16、mindspore.float32和mindspore.float64。默认值:mindspore.float32。
|
||||
|
||||
输入:
|
||||
- **shape** (Tensor) - 生成Tensor的shape。数据类型必须是mindspore.int32或者mindspore.int64。
|
||||
|
|
|
@ -3,7 +3,7 @@ mindspore.ops.UniformInt
|
|||
|
||||
.. py:class:: mindspore.ops.UniformInt(seed=0, seed2=0)
|
||||
|
||||
根据均匀分布在区间 `[minval, maxval)` 中生成随机数,即根据离散概率函数分布:
|
||||
根据均匀分布在区间 `[minval, maxval)` 中生成随机数。离散概率函数定义如下:
|
||||
|
||||
.. math::
|
||||
\text{P}(i|a,b) = \frac{1}{b-a+1},
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.ZerosLike
|
||||
=======================
|
||||
|
||||
.. py:class:: mindspore.ops.ZerosLike()
|
||||
.. py:class:: mindspore.ops.ZerosLike
|
||||
|
||||
返回值为0的Tensor,其shape和数据类型与输入Tensor相同。
|
||||
|
||||
|
|
|
@ -5,7 +5,7 @@ mindspore.ops.blackman_window
|
|||
|
||||
布莱克曼窗口函数。
|
||||
|
||||
`window_length` 是一个Tensor,控制返回的窗口大小,其数据类型必须是整数。特别的,当 `window_length` 为1时,返回的窗口只包含一个值,为 `1` 。`periodic` 决定返回的窗口是否会删除对称窗口的最后一个重复值,并准备用作带函数的周期窗口。因此,如果 `periodic` 为True,the :math:`N` 为 :math:`window\_length + 1`。
|
||||
`window_length` 是一个Tensor,控制返回的窗口大小,其数据类型必须是整数。特别当 `window_length` 为1时,返回的窗口只包含一个值,为 `1` 。 `periodic` 决定返回的窗口是否会删除对称窗口的最后一个重复值,并准备用作该函数的周期窗口。因此,如果 `periodic` 为True,则 :math:`N` 为 :math:`window\_length + 1` 。
|
||||
|
||||
.. math::
|
||||
w[n] = 0.42 - 0.5 cos(\frac{2\pi n}{N - 1}) + 0.08 cos(\frac{4\pi n}{N - 1})
|
||||
|
|
|
@ -18,6 +18,9 @@ mindspore.ops.conv2d
|
|||
|
||||
请参考论文 `Gradient Based Learning Applied to Document Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_ 。更详细的介绍,参见: `ConvNets <http://cs231n.github.io/convolutional-networks/>`_ 。
|
||||
|
||||
.. note::
|
||||
在Ascend平台上,目前只支持深度卷积场景下的分组卷积运算。也就是说,当 `group>1` 的场景下,必须要满足 `C_{in}` = `C_{out}` = `group` 的约束条件。
|
||||
|
||||
参数:
|
||||
- **inputs** (Tensor) - shape为 :math:`(N, C_{in}, H_{in}, W_{in})` 的Tensor。
|
||||
- **weight** (Tensor) - 设置卷积核的大小为 :math:`(\text{kernel_size[0]}, \text{kernel_size[1]})` ,则shape为 :math:`(C_{out}, C_{in}, \text{kernel_size[0]}, \text{kernel_size[1]})` 。
|
||||
|
@ -32,9 +35,6 @@ mindspore.ops.conv2d
|
|||
- **dilation** (Union(int, tuple[int]),可选) - 卷积核膨胀尺寸。数据类型为int或由2个int组成的tuple。若 :math:`k > 1` ,则卷积核间隔 `k` 个元素进行采样。垂直和水平方向上的 `k` ,其取值范围分别为[1, H]和[1, W]。默认值:1。
|
||||
- **group** (int,可选) - 将过滤器拆分为组。默认值:1。
|
||||
|
||||
.. note::
|
||||
在Ascend平台上,目前只支持深度卷积场景下的分组卷积运算。也就是说,当 `group>1` 的场景下,必须要满足 `in\_channels` = `out\_channels` = `group` 的约束条件。
|
||||
|
||||
返回:
|
||||
Tensor,卷积后的值。shape为 :math:`(N, C_{out}, H_{out}, W_{out})` 。
|
||||
|
||||
|
|
|
@ -19,6 +19,9 @@ mindspore.ops.conv3d
|
|||
|
||||
详细内容请参考论文 `Gradient Based Learning Applied to Document Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_ 。
|
||||
|
||||
.. note::
|
||||
在Ascend平台上,目前只支持深度卷积场景下的分组卷积运算。也就是说,当 `group>1` 的场景下,必须要满足 `C_{in}` = `C_{out}` = `group` 的约束条件。
|
||||
|
||||
参数:
|
||||
- **inputs** (Tensor) - shape为 :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` 的Tensor。
|
||||
- **weight** (Tensor) - 设置卷积核的大小为 :math:`(\text{kernel_size[0]}, \text{kernel_size[1]}, \text{kernel_size[2]})` ,则shape为 :math:`(C_{out}, C_{in}, \text{kernel_size[0]}, \text{kernel_size[1]}, \text{kernel_size[2]})` 。
|
||||
|
|
|
@ -779,7 +779,7 @@ Status CacheServer::BatchCacheRows(CacheRequest *rq) {
|
|||
}
|
||||
CacheServerRequest *cache_rq;
|
||||
RETURN_IF_NOT_OK(GetFreeRequestTag(&cache_rq));
|
||||
// Fill in details.
|
||||
// Fill in detail.
|
||||
cache_rq->type_ = BaseRequest::RequestType::kInternalCacheRow;
|
||||
cache_rq->st_ = CacheServerRequest::STATE::PROCESS;
|
||||
cache_rq->rq_.set_connection_id(connection_id);
|
||||
|
|
|
@ -65,8 +65,8 @@ abstract::ShapePtr BiasAddInferShape(const PrimitivePtr &primitive, const std::v
|
|||
if ((data_format == static_cast<int64_t>(Format::NCDHW)) && input_shape.size() != x_max_rank &&
|
||||
(is_ascend || is_cpu)) {
|
||||
MS_EXCEPTION(ValueError) << "For '" << prim_name
|
||||
<< "', NCDHW format only support 5-dims input in Ascend or CPU target, but got "
|
||||
<< attr_value_str << ".";
|
||||
<< "', NCDHW format only supports 5-D input on Ascend or CPU, but got a"
|
||||
<< input_shape.size() << "-D input.";
|
||||
}
|
||||
if ((data_format == static_cast<int64_t>(Format::NHWC) || data_format == static_cast<int64_t>(Format::NCHW)) &&
|
||||
(input_shape.size() > x_max_rank || input_shape.size() < x_min_rank)) {
|
||||
|
|
|
@ -157,7 +157,7 @@ class Conv2d(_Conv):
|
|||
For more details, please refers to the paper `Gradient Based Learning Applied to Document
|
||||
Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
|
||||
|
||||
.. note::
|
||||
Note:
|
||||
On Ascend platform, only group convolution in depthwise convolution scenarios is supported.
|
||||
That is, when `group>1`, condition `in\_channels` = `out\_channels` = `group` must be satisfied.
|
||||
|
||||
|
@ -347,7 +347,7 @@ class Conv1d(_Conv):
|
|||
For more details, please refers to the paper `Gradient Based Learning Applied to Document
|
||||
Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
|
||||
|
||||
.. note::
|
||||
Note:
|
||||
On Ascend platform, only group convolution in depthwise convolution scenarios is supported.
|
||||
That is, when `group>1`, condition `in\_channels` = `out\_channels` = `group` must be satisfied.
|
||||
|
||||
|
@ -535,6 +535,10 @@ class Conv3d(_Conv):
|
|||
For more details, please refers to the paper `Gradient Based Learning Applied to Document
|
||||
Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
|
||||
|
||||
Note:
|
||||
On Ascend platform, only group convolution in depthwise convolution scenarios is supported.
|
||||
That is, when `group>1`, condition `in\_channels` = `out\_channels` = `group` must be satisfied.
|
||||
|
||||
Args:
|
||||
in_channels (int): The channel number of the input tensor of the Conv3d layer.
|
||||
out_channels (int): The channel number of the output tensor of the Conv3d layer.
|
||||
|
|
|
@ -5657,7 +5657,7 @@ def stft(x, n_fft, hop_length=None, win_length=None, window=None, center=True,
|
|||
if return_complex is None:
|
||||
return_complex = _is_complex(x) or _is_complex(window)
|
||||
if center:
|
||||
_check_input_dtype("center", center, [bool], "")
|
||||
_check_attr_dtype("center", center, [bool], "stft")
|
||||
signal_dim = len(x.shape)
|
||||
pad = n_fft // 2
|
||||
if signal_dim == 1:
|
||||
|
|
|
@ -3762,13 +3762,11 @@ def conv2d(inputs, weight, pad_mode="valid", padding=0, stride=1, dilation=1, gr
|
|||
The full kernel has shape :math:`(C_{out}, C_{in} / \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]})`,
|
||||
where `group` is the group number to split the input in the channel dimension.
|
||||
|
||||
If the `pad_mode` is set to be "valid", the output height and width will be
|
||||
:math:`\left \lfloor{
|
||||
If the `pad_mode` is set to be "valid", the output height and width will be :math:`\left \lfloor{
|
||||
1 + \frac{H_{in} + \text{padding[0]} + \text{padding[1]} - \text{kernel_size[0]} -
|
||||
(\text{kernel_size[0]} - 1) \times(\text{dilation[0]} - 1)} {\text { stride[0] }}} \right \rfloor` and
|
||||
|
||||
:math:`\left \lfloor{
|
||||
1 + \frac{W_{in} + \text{padding[2]} + \text{padding[3]} - \text{kernel_size[1]} -
|
||||
:math:`\left \lfloor{1 + \frac{W_{in} + \text{padding[2]} + \text{padding[3]} - \text{kernel_size[1]} -
|
||||
(\text{kernel_size[1]} - 1) \times(\text{dilation[1]} - 1)} {\text { stride[1] }}} \right \rfloor` respectively.
|
||||
|
||||
Where :math:`dilation` is Spacing between kernel elements, :math:`stride` is The step length of each step,
|
||||
|
@ -3780,6 +3778,10 @@ def conv2d(inputs, weight, pad_mode="valid", padding=0, stride=1, dilation=1, gr
|
|||
<http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_. More detailed introduction can be found here:
|
||||
`ConvNets <http://cs231n.github.io/convolutional-networks/>`_ .
|
||||
|
||||
Note:
|
||||
On Ascend platform, only group convolution in depthwise convolution scenarios is supported.
|
||||
That is, when `group>1`, condition `C_{in}` = `C_{out}` = `group` must be satisfied.
|
||||
|
||||
Args:
|
||||
inputs (Tensor): Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
||||
weight (Tensor): Set size of kernel is :math:`(\text{kernel_size[0]}, \text{kernel_size[1]})`,
|
||||
|
@ -3789,9 +3791,8 @@ def conv2d(inputs, weight, pad_mode="valid", padding=0, stride=1, dilation=1, gr
|
|||
|
||||
- same: Adopts the way of completion. The height and width of the output will be equal to
|
||||
the input `x` divided by stride. The padding will be evenly calculated in top and bottom,
|
||||
left and right possiblily.
|
||||
Otherwise, the last extra padding will be calculated from the bottom and the right side.
|
||||
If this mode is set, `padding` must be 0.
|
||||
left and right possiblily. Otherwise, the last extra padding will be calculated from the bottom
|
||||
and the right side. If this mode is set, `padding` must be 0.
|
||||
|
||||
- valid: Adopts the way of discarding. The possible largest height and width of output will be returned
|
||||
without padding. Extra pixels will be discarded. If this mode is set, `padding` must be 0.
|
||||
|
@ -3799,10 +3800,9 @@ def conv2d(inputs, weight, pad_mode="valid", padding=0, stride=1, dilation=1, gr
|
|||
- pad: Implicit paddings on both sides of the input `x`. The number of `padding` will be padded to the input
|
||||
Tensor borders. `padding` must be greater than or equal to 0.
|
||||
padding (Union(int, tuple[int]), optional): Implicit paddings on both sides of the input `x`.
|
||||
If `padding` is one integer,
|
||||
the paddings of top, bottom, left and right are the same, equal to padding. If `padding` is a tuple
|
||||
with four integers, the paddings of top, bottom, left and right will be equal to padding[0],
|
||||
padding[1], padding[2], and padding[3] accordingly. Default: 0.
|
||||
If `padding` is one integer, the paddings of top, bottom, left and right are the same, equal to padding.
|
||||
If `padding` is a tuple with four integers, the paddings of top, bottom, left and right will be equal
|
||||
to padding[0], padding[1], padding[2], and padding[3] accordingly. Default: 0.
|
||||
stride (Union(int, tuple[int]), optional): The distance of kernel moving, an int number that represents
|
||||
the height and width of movement are both strides, or a tuple of two int numbers that
|
||||
represent height and width of movement respectively. Default: 1.
|
||||
|
@ -4063,7 +4063,7 @@ def batch_norm(input_x, running_mean, running_var, weight, bias, training=False,
|
|||
then "reserve_space_1" and "reserve_space_2" have the same value as "mean" and "variance" respectively.
|
||||
- For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction.
|
||||
|
||||
.. note::
|
||||
Note:
|
||||
- If `training` is `False`, `weight`, `bias`, `running_mean` and `running_var` are Tensors.
|
||||
- If `training` is `True`, `weight`, `bias`, `running_mean` and `running_var` are Parameters.
|
||||
|
||||
|
@ -4231,6 +4231,10 @@ def conv3d(inputs, weight, pad_mode="valid", padding=0, stride=1, dilation=1, gr
|
|||
For more details, please refers to the paper `Gradient Based Learning Applied to Document
|
||||
Recognition <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_ .
|
||||
|
||||
Note:
|
||||
On Ascend platform, only group convolution in depthwise convolution scenarios is supported.
|
||||
That is, when `group>1`, condition `C_{in}` = `C_{out}` = `group` must be satisfied.
|
||||
|
||||
Args:
|
||||
inputs (Tensor): Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
|
||||
weight (Tensor): Set size of kernel is :math:`(\text{kernel_size[0]}, \text{kernel_size[1]},
|
||||
|
|
|
@ -473,7 +473,8 @@ class Receive(PrimitiveWithInfer):
|
|||
shape (list[int]): A required list identifying the shape of the tensor to be received.
|
||||
dtype (Type): A required Type identifying the type of the tensor to be received. The supported types:
|
||||
int8, int16, int32, float16, float32.
|
||||
group (str, optional): The communication group to work on. Default: "hccl_world_group/nccl_world_group".
|
||||
group (str, optional): The communication group to work on.
|
||||
Default: "hccl_world_group" on Ascend, "nccl_world_group" on GPU.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
||||
|
|
|
@ -427,7 +427,7 @@ class Im2Col(Primitive):
|
|||
The `pads`, `strides` and `dilations` arguments specify
|
||||
how the sliding blocks are retrieved.
|
||||
|
||||
.. note::
|
||||
Note:
|
||||
Currently, only 4-D input tensors (batched image-like tensors) are supported.
|
||||
|
||||
Args:
|
||||
|
|
|
@ -635,7 +635,7 @@ class ResizeLinear1D(Primitive):
|
|||
r"""
|
||||
Using the linear interpolate method resize the input tensor 'x'.
|
||||
|
||||
For general resize, refer to :func:`mindspore.ops.interpolate` for more detail.
|
||||
For general resize, refer to :func:`mindspore.ops.interpolate` for more details.
|
||||
|
||||
.. warning::
|
||||
This is an experimental feature and is subjected to change.
|
||||
|
|
|
@ -28,7 +28,7 @@ class ScalarCast(PrimitiveWithInfer):
|
|||
"""
|
||||
Casts the input scalar to another type.
|
||||
|
||||
Refer to :func:`mindspore.ops.scalar_cast` for more detail.
|
||||
Refer to :func:`mindspore.ops.scalar_cast` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
|
|
@ -150,7 +150,7 @@ class Ger(Primitive):
|
|||
shape :math:`(m,)` and `x2` is a 1D Tensor of shape :math:`(n,)`, then `output` must be a 2D Tensor of shape
|
||||
:math:`(m, n)`.
|
||||
|
||||
Refer to :func:`mindspore.ops.ger` for more detail.
|
||||
Refer to :func:`mindspore.ops.ger` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -177,7 +177,7 @@ class Add(_MathBinaryOp):
|
|||
r"""
|
||||
Adds two input tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.add` for more detail.
|
||||
Refer to :func:`mindspore.ops.add` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -410,7 +410,7 @@ class AssignAdd(Primitive):
|
|||
"""
|
||||
Updates a `Parameter` by adding a value to it.
|
||||
|
||||
Refer to :func:`mindspore.ops.assign_add` for more detail.
|
||||
Refer to :func:`mindspore.ops.assign_add` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -448,7 +448,7 @@ class AssignSub(Primitive):
|
|||
"""
|
||||
Updates a `Parameter` by subtracting a value from it.
|
||||
|
||||
Refer to :func:`mindspore.ops.assign_sub` for more detail.
|
||||
Refer to :func:`mindspore.ops.assign_sub` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -1368,7 +1368,7 @@ class Cdist(Primitive):
|
|||
"""
|
||||
Computes batched the p-norm distance between each pair of the two collections of row vectors.
|
||||
|
||||
Refer to :func:`mindspore.ops.cdist` for more detail.
|
||||
Refer to :func:`mindspore.ops.cdist` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -1401,7 +1401,7 @@ class LpNorm(Primitive):
|
|||
.. math::
|
||||
output = sum(abs(input)**p)**(1/p)
|
||||
|
||||
Refer to :func:`mindspore.ops.norm` for more detail.
|
||||
Refer to :func:`mindspore.ops.norm` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -1724,7 +1724,7 @@ class AddN(Primitive):
|
|||
"""
|
||||
Computes addition of all input tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.addn` for more detail.
|
||||
Refer to :func:`mindspore.ops.addn` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -1765,7 +1765,7 @@ class AccumulateNV2(Primitive):
|
|||
"""
|
||||
Computes accumulation of all input tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.accumulate_n` for more detail.
|
||||
Refer to :func:`mindspore.ops.accumulate_n` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
@ -1807,7 +1807,7 @@ class Neg(Primitive):
|
|||
"""
|
||||
Returns a tensor with negative values of the input tensor element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.neg` for more detail.
|
||||
Refer to :func:`mindspore.ops.neg` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -1928,7 +1928,7 @@ class InplaceAdd(PrimitiveWithInfer):
|
|||
"""
|
||||
Adds `v` into specified rows of `x`. Computes `y` = `x`; y[i,] += `v`.
|
||||
|
||||
Refer to :func:`mindspore.ops.inplace_add` for more detail.
|
||||
Refer to :func:`mindspore.ops.inplace_add` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
@ -1985,7 +1985,7 @@ class InplaceIndexAdd(Primitive):
|
|||
Adds tensor `updates` to specified axis and indices of tensor `var`. The axis should be in [0, len(var.dim) - 1],
|
||||
and indices should be in [0, the size of `var` - 1] at the axis dimension.
|
||||
|
||||
Refer to :func:`mindspore.ops.inplace_index_add` for more detail.
|
||||
Refer to :func:`mindspore.ops.inplace_index_add` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``CPU``
|
||||
|
@ -2020,7 +2020,7 @@ class InplaceSub(PrimitiveWithInfer):
|
|||
"""
|
||||
Subtracts `v` into specified rows of `x`. Computes `y` = `x`; y[i,] -= `v`.
|
||||
|
||||
Refer to :func:`mindspore.ops.inplace_sub` for more detail.
|
||||
Refer to :func:`mindspore.ops.inplace_sub` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
@ -2077,7 +2077,7 @@ class Sub(_MathBinaryOp):
|
|||
r"""
|
||||
Subtracts the second input tensor from the first input tensor element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.sub` for more detail.
|
||||
Refer to :func:`mindspore.ops.sub` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2105,7 +2105,7 @@ class Mul(_MathBinaryOp):
|
|||
r"""
|
||||
Multiplies two tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.mul` for more detail.
|
||||
Refer to :func:`mindspore.ops.mul` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2361,7 +2361,7 @@ class Pow(Primitive):
|
|||
r"""
|
||||
Calculates the `y` power of each element in `x`.
|
||||
|
||||
Refer to :func:`mindspore.ops.pow` for more detail.
|
||||
Refer to :func:`mindspore.ops.pow` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2403,7 +2403,7 @@ class Exp(Primitive):
|
|||
r"""
|
||||
Returns exponential of a tensor element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.exp` for more detail.
|
||||
Refer to :func:`mindspore.ops.exp` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2440,7 +2440,7 @@ class Logit(Primitive):
|
|||
\end{cases}
|
||||
\end{align}
|
||||
|
||||
Refer to :func:`mindspore.ops.logit` for more detail.
|
||||
Refer to :func:`mindspore.ops.logit` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
@ -2664,7 +2664,7 @@ class Expm1(Primitive):
|
|||
r"""
|
||||
Returns exponential then minus 1 of a tensor element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.expm1` for more detail.
|
||||
Refer to :func:`mindspore.ops.expm1` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2782,7 +2782,7 @@ class Log(Primitive):
|
|||
"""
|
||||
Returns the natural logarithm of a tensor element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.log` for more detail.
|
||||
Refer to :func:`mindspore.ops.log` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2809,7 +2809,7 @@ class Log1p(Primitive):
|
|||
r"""
|
||||
Returns the natural logarithm of one plus the input tensor element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.log1p` for more detail.
|
||||
Refer to :func:`mindspore.ops.log1p` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2911,7 +2911,7 @@ class Erf(Primitive):
|
|||
r"""
|
||||
Computes the Gauss error function of `x` element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.erf` for more detail.
|
||||
Refer to :func:`mindspore.ops.erf` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2934,7 +2934,7 @@ class Erfc(Primitive):
|
|||
r"""
|
||||
Computes the complementary error function of `x` element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.erfc` for more detail.
|
||||
Refer to :func:`mindspore.ops.erfc` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2957,7 +2957,7 @@ class Minimum(_MathBinaryOp):
|
|||
r"""
|
||||
Computes the minimum of input tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.minimum` for more detail.
|
||||
Refer to :func:`mindspore.ops.minimum` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2992,7 +2992,7 @@ class Maximum(_MathBinaryOp):
|
|||
"""
|
||||
Computes the maximum of input tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.maximum` for more detail.
|
||||
Refer to :func:`mindspore.ops.maximum` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3018,7 +3018,7 @@ class RealDiv(_MathBinaryOp):
|
|||
"""
|
||||
Divides the first input tensor by the second input tensor in floating-point type element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.div` for more detail.
|
||||
Refer to :func:`mindspore.ops.div` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3050,7 +3050,7 @@ class Div(_MathBinaryOp):
|
|||
|
||||
out_{i} = \frac{x_i}{y_i}
|
||||
|
||||
.. note::
|
||||
Note:
|
||||
- Inputs of `x` and `y` comply with the implicit type conversion rules to make the data types consistent.
|
||||
- The inputs must be two tensors or one tensor and one scalar.
|
||||
- When the inputs are two tensors,
|
||||
|
@ -3259,7 +3259,7 @@ class FloorDiv(Primitive):
|
|||
"""
|
||||
Divides the first input tensor by the second input tensor element-wise and round down to the closest integer.
|
||||
|
||||
Refer to :func:`mindspore.ops.floor_div` for more detail.
|
||||
Refer to :func:`mindspore.ops.floor_div` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3441,7 +3441,7 @@ class Floor(Primitive):
|
|||
r"""
|
||||
Rounds a tensor down to the closest integer element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.floor` for more detail.
|
||||
Refer to :func:`mindspore.ops.floor` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3464,7 +3464,7 @@ class FloorMod(Primitive):
|
|||
r"""
|
||||
Computes the remainder of division element-wise, and it's a flooring divide.
|
||||
|
||||
Refer to :func:`mindspore.ops.floor_mod` for more detail.
|
||||
Refer to :func:`mindspore.ops.floor_mod` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3490,7 +3490,7 @@ class Ceil(PrimitiveWithInfer):
|
|||
r"""
|
||||
Rounds a tensor up to the closest integer element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.ceil` for more detail.
|
||||
Refer to :func:`mindspore.ops.ceil` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3605,7 +3605,7 @@ class Xlogy(Primitive):
|
|||
Computes the first input tensor multiplied by the logarithm of second input tensor element-wise.
|
||||
Returns zero when `x` is zero.
|
||||
|
||||
Refer to :func:`mindspore.ops.xlogy` for more detail.
|
||||
Refer to :func:`mindspore.ops.xlogy` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3630,7 +3630,7 @@ class Acosh(Primitive):
|
|||
r"""
|
||||
Computes inverse hyperbolic cosine of the inputs element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.acosh` for more detail.
|
||||
Refer to :func:`mindspore.ops.acosh` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3656,7 +3656,7 @@ class Cosh(Primitive):
|
|||
r"""
|
||||
Computes hyperbolic cosine of input element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.cosh` for more detail.
|
||||
Refer to :func:`mindspore.ops.cosh` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3678,7 +3678,7 @@ class Asinh(Primitive):
|
|||
r"""
|
||||
Computes inverse hyperbolic sine of the input element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.asinh` for more detail.
|
||||
Refer to :func:`mindspore.ops.asinh` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3701,7 +3701,7 @@ class Sinc(Primitive):
|
|||
r"""
|
||||
Computes the normalized sinc of input.
|
||||
|
||||
Refer to :func:`mindspore.ops.sinc` for more detail.
|
||||
Refer to :func:`mindspore.ops.sinc` for more details.
|
||||
|
||||
.. math::
|
||||
|
||||
|
@ -3743,7 +3743,7 @@ class Sinh(Primitive):
|
|||
r"""
|
||||
Computes hyperbolic sine of the input element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.sinh` for more detail.
|
||||
Refer to :func:`mindspore.ops.sinh` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3781,7 +3781,7 @@ class Equal(Primitive):
|
|||
r"""
|
||||
Computes the equivalence between two tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.equal` for more detail.
|
||||
Refer to :func:`mindspore.ops.equal` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3903,7 +3903,7 @@ class NotEqual(Primitive):
|
|||
"""
|
||||
Computes the non-equivalence of two tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.ne` for more detail.
|
||||
Refer to :func:`mindspore.ops.ne` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3934,7 +3934,7 @@ class Greater(PrimitiveWithCheck):
|
|||
r"""
|
||||
Compare the value of the input parameters :math:`x,y` element-wise, and the output result is a bool value.
|
||||
|
||||
Refer to :func:`mindspore.ops.gt` for more detail.
|
||||
Refer to :func:`mindspore.ops.gt` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3969,7 +3969,7 @@ class GreaterEqual(PrimitiveWithCheck):
|
|||
r"""
|
||||
Computes the boolean value of :math:`x >= y` element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.ge` for more detail.
|
||||
Refer to :func:`mindspore.ops.ge` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4001,7 +4001,7 @@ class Lerp(Primitive):
|
|||
"""
|
||||
Calculate the linear interpolation between two tensors based on the weight parameter.
|
||||
|
||||
Refer to :func:`mindspore.ops.lerp` for more detail.
|
||||
Refer to :func:`mindspore.ops.lerp` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4063,7 +4063,7 @@ class Less(PrimitiveWithCheck):
|
|||
r"""
|
||||
Computes the boolean value of :math:`x < y` element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.less` for more detail.
|
||||
Refer to :func:`mindspore.ops.less` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4095,7 +4095,7 @@ class LessEqual(PrimitiveWithCheck):
|
|||
r"""
|
||||
Computes the boolean value of :math:`x <= y` element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.le` for more detail.
|
||||
Refer to :func:`mindspore.ops.le` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4127,7 +4127,7 @@ class LogicalNot(Primitive):
|
|||
"""
|
||||
Computes the "logical NOT" of a tensor element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.logical_not` for more detail.
|
||||
Refer to :func:`mindspore.ops.logical_not` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4150,7 +4150,7 @@ class LogicalAnd(_LogicBinaryOp):
|
|||
r"""
|
||||
Computes the "logical AND" of two tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.logical_and` for more detail.
|
||||
Refer to :func:`mindspore.ops.logical_and` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4169,7 +4169,7 @@ class LogicalOr(_LogicBinaryOp):
|
|||
"""
|
||||
Computes the "logical OR" of two tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.logical_or` for more detail.
|
||||
Refer to :func:`mindspore.ops.logical_or` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4226,7 +4226,7 @@ class IsNan(Primitive):
|
|||
r"""
|
||||
Determines which elements are NaN for each position.
|
||||
|
||||
Refer to :func:`mindspore.ops.isnan` for more detail.
|
||||
Refer to :func:`mindspore.ops.isnan` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4289,7 +4289,7 @@ class IsFinite(Primitive):
|
|||
r"""
|
||||
Determines which elements are finite for each position.
|
||||
|
||||
Refer to :func:`mindspore.ops.isfinite` for more detail.
|
||||
Refer to :func:`mindspore.ops.isfinite` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4502,7 +4502,7 @@ class Cos(Primitive):
|
|||
r"""
|
||||
Computes cosine of input element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.cos` for more detail.
|
||||
Refer to :func:`mindspore.ops.cos` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4524,7 +4524,7 @@ class ACos(Primitive):
|
|||
r"""
|
||||
Computes arccosine of input tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.acos` for more detail.
|
||||
Refer to :func:`mindspore.ops.acos` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4547,7 +4547,7 @@ class Sin(Primitive):
|
|||
r"""
|
||||
Computes sine of the input element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.sin` for more detail.
|
||||
Refer to :func:`mindspore.ops.sin` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4569,7 +4569,7 @@ class Asin(Primitive):
|
|||
r"""
|
||||
Computes arcsine of input tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.asin` for more detail.
|
||||
Refer to :func:`mindspore.ops.asin` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4672,7 +4672,7 @@ class Abs(Primitive):
|
|||
r"""
|
||||
Returns absolute value of a tensor element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.abs` for more detail.
|
||||
Refer to :func:`mindspore.ops.abs` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4730,7 +4730,7 @@ class Round(Primitive):
|
|||
r"""
|
||||
Returns half to even of a tensor element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.round` for more detailed.
|
||||
Refer to :func:`mindspore.ops.round` for more detailsed.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4753,7 +4753,7 @@ class Tan(Primitive):
|
|||
r"""
|
||||
Computes tangent of `x` element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.tan` for more detail.
|
||||
Refer to :func:`mindspore.ops.tan` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
@ -4776,7 +4776,7 @@ class Atan(Primitive):
|
|||
r"""
|
||||
Computes the trigonometric inverse tangent of the input element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.atan` for more detail.
|
||||
Refer to :func:`mindspore.ops.atan` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4802,7 +4802,7 @@ class Atanh(Primitive):
|
|||
.. warning::
|
||||
This is an experimental prototype that is subject to change and/or deletion.
|
||||
|
||||
Refer to :func:`mindspore.ops.atanh` for more detail.
|
||||
Refer to :func:`mindspore.ops.atanh` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4825,7 +4825,7 @@ class Atan2(_MathBinaryOp):
|
|||
r"""
|
||||
Returns arctangent of x/y element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.atan2` for more detail.
|
||||
Refer to :func:`mindspore.ops.atan2` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
@ -4897,7 +4897,7 @@ class BitwiseAnd(_BitwiseBinaryOp):
|
|||
r"""
|
||||
Returns bitwise `and` of two tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.bitwise_and` for more detail.
|
||||
Refer to :func:`mindspore.ops.bitwise_and` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
@ -4916,7 +4916,7 @@ class BitwiseOr(_BitwiseBinaryOp):
|
|||
r"""
|
||||
Returns bitwise `or` of two tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.bitwise_or` for more detail.
|
||||
Refer to :func:`mindspore.ops.bitwise_or` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
@ -4935,7 +4935,7 @@ class BitwiseXor(_BitwiseBinaryOp):
|
|||
r"""
|
||||
Returns bitwise `xor` of two tensors element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.bitwise_xor` for more detail.
|
||||
Refer to :func:`mindspore.ops.bitwise_xor` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
@ -5448,7 +5448,7 @@ class LinSpace(Primitive):
|
|||
Returns a Tensor whose value is `num` evenly spaced in the interval `start` and `stop` (including `start` and
|
||||
`stop`), and the length of the output Tensor is `num`.
|
||||
|
||||
Refer to :func:`mindspore.ops.linspace` for more detail.
|
||||
Refer to :func:`mindspore.ops.linspace` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -5565,7 +5565,7 @@ class MatrixDeterminant(Primitive):
|
|||
"""
|
||||
Computes the determinant of one or more square matrices.
|
||||
|
||||
Refer to :func:`mindspore.ops.matrix_determinant` for more detail.
|
||||
Refer to :func:`mindspore.ops.matrix_determinant` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
@ -5959,7 +5959,7 @@ class Trunc(Primitive):
|
|||
"""
|
||||
Returns a new tensor with the truncated integer values of the elements of input.
|
||||
|
||||
Refer to :func:`mindspore.ops.trunc` for more detail.
|
||||
Refer to :func:`mindspore.ops.trunc` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
@ -6555,7 +6555,7 @@ class CholeskyInverse(Primitive):
|
|||
"""
|
||||
Returns the inverse of the positive definite matrix using cholesky matrix factorization.
|
||||
|
||||
Refer to :func::`mindspore.ops.cholesky_inverse` for more detail.
|
||||
Refer to :func::`mindspore.ops.cholesky_inverse` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
@ -6769,7 +6769,7 @@ class SparseSegmentMean(Primitive):
|
|||
"""
|
||||
Computes the mean along sparse segments of a Tensor.
|
||||
|
||||
Refer to :func:`mindspore.ops.sparse_segment_mean` for more detail.
|
||||
Refer to :func:`mindspore.ops.sparse_segment_mean` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
@ -6839,7 +6839,7 @@ class Bernoulli(Primitive):
|
|||
"""
|
||||
Randomly set the elements of output to 0 or 1 with the probability of P which follows the Bernoulli distribution.
|
||||
|
||||
Refer to :func:`mindspore.ops.bernoulli` for more detail.
|
||||
Refer to :func:`mindspore.ops.bernoulli` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
|
@ -6954,7 +6954,7 @@ class Cholesky(Primitive):
|
|||
Computes the Cholesky decomposition of a symmetric positive-definite matrix `A`
|
||||
or for batches of symmetric positive-definite matrices.
|
||||
|
||||
Refer to :func::`mindspore.ops.cholesky` for more detail.
|
||||
Refer to :func::`mindspore.ops.cholesky` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
@ -7234,7 +7234,12 @@ class Polar(Primitive):
|
|||
|
||||
class NextAfter(Primitive):
|
||||
"""
|
||||
Returns the next representable value after `x1` in the direction of `x2`.
|
||||
Returns the next representable floating-point value after `x1` towards `x2` element-wise.
|
||||
|
||||
Say there are two float32 numbers :math:`a`, :math:`b`, and let the
|
||||
representable delta of float32 datatype is :math:`eps`. If :math:`a < b`,
|
||||
then the next representable of :math:`a` towards :math:`b` is :math:`a+eps`,
|
||||
the next representable of :math:`b` towards :math:`a` is :math:`b-eps`.
|
||||
|
||||
.. math::
|
||||
|
||||
|
|
|
@ -302,7 +302,7 @@ class AdaptiveAvgPool2D(AdaptiveAvgPool2DV1):
|
|||
r"""
|
||||
2D adaptive average pooling for temporal data.
|
||||
|
||||
Refer to :func:`mindspore.ops.adaptive_avg_pool2d` for more detail.
|
||||
Refer to :func:`mindspore.ops.adaptive_avg_pool2d` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
|
@ -415,7 +415,7 @@ class AdaptiveMaxPool3D(Primitive):
|
|||
r"""
|
||||
Applies a 3D adaptive max pooling over an input signal composed of several input planes.
|
||||
|
||||
Refer to :func:`mindspore.ops.adaptive_max_pool3d` for more detail.
|
||||
Refer to :func:`mindspore.ops.adaptive_max_pool3d` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU`` ``CPU``
|
||||
|
@ -446,7 +446,7 @@ class Softmax(Primitive):
|
|||
r"""
|
||||
Applies the Softmax operation to the input tensor on the specified axis.
|
||||
|
||||
Refer to :func:`mindspore.ops.softmax` for more detail.
|
||||
Refer to :func:`mindspore.ops.softmax` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -474,7 +474,7 @@ class LogSoftmax(Primitive):
|
|||
r"""
|
||||
Log Softmax activation function.
|
||||
|
||||
Refer to :func:`mindspore.ops.log_softmax` for more detail.
|
||||
Refer to :func:`mindspore.ops.log_softmax` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -843,7 +843,7 @@ class HSwish(Primitive):
|
|||
r"""
|
||||
Hard swish activation function.
|
||||
|
||||
Refer to :func:`mindspore.ops.hardswish` for more detail.
|
||||
Refer to :func:`mindspore.ops.hardswish` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -931,7 +931,7 @@ class Tanh(Primitive):
|
|||
|
||||
Computes hyperbolic tangent of input element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.tanh` for more detail.
|
||||
Refer to :func:`mindspore.ops.tanh` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -1340,7 +1340,7 @@ class Conv2D(Primitive):
|
|||
r"""
|
||||
2D convolution layer.
|
||||
|
||||
Refer to :func:`mindspore.ops.conv2d` for more detail.
|
||||
Refer to :func:`mindspore.ops.conv2d` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2251,7 +2251,7 @@ class AvgPool(_Pool):
|
|||
r"""
|
||||
Average pooling operation.
|
||||
|
||||
Refer to :func:`mindspore.ops.avg_pool2d` for more detail.
|
||||
Refer to :func:`mindspore.ops.avg_pool2d` for more details.
|
||||
|
||||
Args:
|
||||
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value,
|
||||
|
@ -2972,7 +2972,7 @@ class SmoothL1Loss(Primitive):
|
|||
r"""
|
||||
Calculate the smooth L1 loss, and the L1 loss function has robustness.
|
||||
|
||||
Refer to :func:`mindspore.ops.smooth_l1_loss` for more detail.
|
||||
Refer to :func:`mindspore.ops.smooth_l1_loss` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3645,7 +3645,7 @@ class ResizeBilinear(PrimitiveWithInfer):
|
|||
The resizing only affects the lower two dimensions which represent the height and width. The input images
|
||||
can be represented by different data types, but the data types of output images are always float32.
|
||||
|
||||
For general resize, refer to :func:`mindspore.ops.interpolate` for more detail.
|
||||
For general resize, refer to :func:`mindspore.ops.interpolate` for more details.
|
||||
|
||||
.. warning::
|
||||
This interface does not support dynamic shape and is subject to change or deletion,
|
||||
|
@ -3957,7 +3957,7 @@ class FastGeLU(Primitive):
|
|||
r"""
|
||||
Fast Gaussian Error Linear Units activation function.
|
||||
|
||||
Refer to :func:`mindspore.ops.fast_gelu` for more detail.
|
||||
Refer to :func:`mindspore.ops.fast_gelu` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -4071,7 +4071,7 @@ class LSTM(PrimitiveWithInfer):
|
|||
"""
|
||||
Performs the Long Short-Term Memory (LSTM) on the input.
|
||||
|
||||
For detailed information, please refer to :class:`mindspore.nn.LSTM`.
|
||||
For detailsed information, please refer to :class:`mindspore.nn.LSTM`.
|
||||
|
||||
Args:
|
||||
input_size (int): Number of features of input.
|
||||
|
@ -4079,8 +4079,8 @@ class LSTM(PrimitiveWithInfer):
|
|||
num_layers (int): Number of layers of stacked LSTM.
|
||||
has_bias (bool): Whether the cell has bias `b_ih` and `b_hh`.
|
||||
bidirectional (bool): Specifies whether it is a bidirectional LSTM.
|
||||
dropout (float, optional): If not 0, append `Dropout` layer on the outputs of each
|
||||
LSTM layer except the last layer. The range of dropout is [0.0, 1.0]. Default: 0.0.
|
||||
dropout (float): If not 0, append `Dropout` layer on the outputs of each
|
||||
LSTM layer except the last layer. The range of dropout is [0.0, 1.0].
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - Tensor of shape (seq_len, batch_size, `input_size`) or
|
||||
|
@ -4316,7 +4316,7 @@ class Pad(Primitive):
|
|||
r"""
|
||||
Pads the input tensor according to the paddings.
|
||||
|
||||
Refer to :func:`mindspore.ops.pad` for more detail. Use :func:`mindspore.ops.pad` instead if `paddings` has
|
||||
Refer to :func:`mindspore.ops.pad` for more details. Use :func:`mindspore.ops.pad` instead if `paddings` has
|
||||
negative values.
|
||||
|
||||
Args:
|
||||
|
@ -6517,7 +6517,7 @@ class ApplyProximalGradientDescent(Primitive):
|
|||
r"""
|
||||
Updates relevant entries according to the FOBOS(Forward Backward Splitting) algorithm.
|
||||
Refer to the paper `Efficient Learning using Forward-Backward Splitting
|
||||
<http://papers.nips.cc//paper/3793-efficient-learning-using-forward-backward-splitting.pdf>`_ for more detail.
|
||||
<http://papers.nips.cc//paper/3793-efficient-learning-using-forward-backward-splitting.pdf>`_ for more details.
|
||||
|
||||
.. math::
|
||||
\begin{array}{ll} \\
|
||||
|
@ -6935,7 +6935,7 @@ class Dropout(PrimitiveWithCheck):
|
|||
with probability 1-`keep_prob` from a Bernoulli distribution. It plays the
|
||||
role of reducing neuron correlation and avoid overfitting.
|
||||
|
||||
Refer to :func:`mindspore.ops.dropout` for more detail.
|
||||
Refer to :func:`mindspore.ops.dropout` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -6974,7 +6974,7 @@ class Dropout2D(PrimitiveWithInfer):
|
|||
Note:
|
||||
The keep probability :math:`keep\_prob` is equal to :math:`1 - p` in :func:`mindspore.ops.dropout2d`.
|
||||
|
||||
Refer to :func:`mindspore.ops.dropout2d` for more detail.
|
||||
Refer to :func:`mindspore.ops.dropout2d` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -7007,7 +7007,7 @@ class Dropout3D(PrimitiveWithInfer):
|
|||
Note:
|
||||
The keep probability :math:`keep\_prob` is equal to :math:`1 - p` in :func:`mindspore.ops.dropout3d`.
|
||||
|
||||
Refer to :func:`mindspore.ops.dropout3d` for more detail.
|
||||
Refer to :func:`mindspore.ops.dropout3d` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -7118,7 +7118,7 @@ class CTCGreedyDecoder(Primitive):
|
|||
r"""
|
||||
Performs greedy decoding on the logits given in inputs.
|
||||
|
||||
Refer to :func:`mindspore.ops.ctc_greedy_decoder` for more detail.
|
||||
Refer to :func:`mindspore.ops.ctc_greedy_decoder` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
@ -7449,7 +7449,7 @@ class InTopK(Primitive):
|
|||
r"""
|
||||
Determines whether the targets are in the top `k` predictions.
|
||||
|
||||
Refer to :func:`mindspore.ops.intopk` for more detail.
|
||||
Refer to :func:`mindspore.ops.intopk` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -7649,7 +7649,7 @@ class Conv3D(Primitive):
|
|||
r"""
|
||||
3D convolution layer.
|
||||
|
||||
Refer to :func:`mindspore.ops.conv3d` for more detail.
|
||||
Refer to :func:`mindspore.ops.conv3d` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -8368,7 +8368,7 @@ class SoftShrink(Primitive):
|
|||
r"""
|
||||
Applies the SoftShrink function element-wise.
|
||||
|
||||
Refer to :func:`mindspore.ops.soft_shrink` for more detail.
|
||||
Refer to :func:`mindspore.ops.soft_shrink` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
@ -8396,7 +8396,7 @@ class HShrink(Primitive):
|
|||
r"""
|
||||
Hard Shrink activation function.
|
||||
|
||||
Refer to :func:`mindspore.ops.hardshrink` for more detail.
|
||||
Refer to :func:`mindspore.ops.hardshrink` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
@ -9561,7 +9561,7 @@ class DeformableOffsets(Primitive):
|
|||
r"""
|
||||
Computes the deformed convolution output with the expected input.
|
||||
|
||||
Refer to :func:`mindspore.ops.deformable_conv2d` for more detail.
|
||||
Refer to :func:`mindspore.ops.deformable_conv2d` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU`` ``GPU``
|
||||
|
|
|
@ -27,7 +27,7 @@ class Assign(Primitive):
|
|||
"""
|
||||
Assigns `Parameter` with a value.
|
||||
|
||||
Refer to :func:`mindspore.ops.assign` for more detail.
|
||||
Refer to :func:`mindspore.ops.assign` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -329,10 +329,8 @@ class CheckValid(Primitive):
|
|||
"""
|
||||
Checks bounding box.
|
||||
|
||||
Checks whether the bounding box cross data and data border are valid.
|
||||
|
||||
.. warning::
|
||||
specifying the valid boundary (heights x ratio, weights x ratio).
|
||||
Checks whether the bounding boxes specified by `bboxes` is valid.
|
||||
Returns True if the box is within borders specified by `img_metas`, False if not.
|
||||
|
||||
Inputs:
|
||||
- **bboxes** (Tensor) - Bounding boxes tensor with shape (N, 4). "N" indicates the number of
|
||||
|
@ -385,7 +383,7 @@ class IOU(Primitive):
|
|||
Computes the intersection over union (IOU) or the intersection over foreground (IOF) based on the ground-truth and
|
||||
predicted regions.
|
||||
|
||||
Refer to :func:`mindspore.ops.iou` for more detail.
|
||||
Refer to :func:`mindspore.ops.iou` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -542,7 +540,7 @@ class StopGradient(Primitive):
|
|||
StopGradient is used for eliminating the effect of a value on the gradient,
|
||||
such as truncating the gradient propagation from an output of a function.
|
||||
|
||||
Refer to :func:`mindspore.ops.stop_gradient` for more detail.
|
||||
Refer to :func:`mindspore.ops.stop_gradient` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
|
|
@ -136,7 +136,7 @@ class StandardNormal(Primitive):
|
|||
r"""
|
||||
Generates random numbers according to the standard Normal (or Gaussian) random number distribution.
|
||||
|
||||
Refer to :func:`mindspore.ops.standard_normal` for more detail.
|
||||
Refer to :func:`mindspore.ops.standard_normal` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -733,7 +733,7 @@ class RandomChoiceWithMask(Primitive):
|
|||
"""
|
||||
Generates a random sample as index tensor with a mask tensor from a given tensor.
|
||||
|
||||
Refer to :func:`mindspore.ops.choice_with_mask` for more detail.
|
||||
Refer to :func:`mindspore.ops.choice_with_mask` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -874,7 +874,7 @@ class MultinomialWithReplacement(Primitive):
|
|||
The rows of input do not need to sum to one (in which case we use the values as weights),
|
||||
but must be non-negative, finite and have a non-zero sum.
|
||||
|
||||
Refer to :func:`mindspore.ops.multinomial_with_replacement` for more detail.
|
||||
Refer to :func:`mindspore.ops.multinomial_with_replacement` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``CPU``
|
||||
|
@ -901,7 +901,7 @@ class UniformCandidateSampler(PrimitiveWithInfer):
|
|||
|
||||
This function samples a set of classes(sampled_candidates) from [0, range_max-1] based on uniform distribution.
|
||||
|
||||
Refer to :func:`mindspore.ops.uniform_candidate_sampler` for more detail.
|
||||
Refer to :func:`mindspore.ops.uniform_candidate_sampler` for more details.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
|
Loading…
Reference in New Issue