forked from mindspore-Ecosystem/mindspore
support ascend310 infer of Resnext101
This commit is contained in:
parent
08f7e99c9e
commit
6e3b0a4e20
|
@ -103,15 +103,17 @@ ResNeXt是ResNet网络的改进版本,比ResNet的网络多了块多了cardina
|
|||
.
|
||||
└─resnext101-64x4d-mindspore
|
||||
├─README.md
|
||||
├─ascend310_infer #310推理依赖的应用
|
||||
├─scripts
|
||||
├─run_standalone_train.sh # 启动Ascend单机训练(单卡)
|
||||
├─run_distribute_train.sh # 启动Ascend分布式训练(8卡)
|
||||
├─run_standalone_train_for_gpu.sh # 启动GPU单机训练(单卡)
|
||||
├─run_distribute_train_for_gpu.sh # 启动GPU分布式训练(8卡)
|
||||
├─run_infer_310.sh # 启动Ascend310推理
|
||||
└─run_eval.sh # 启动评估
|
||||
├─src
|
||||
├─backbone
|
||||
├─_init_.py # 初始化
|
||||
├─_init_.py # 初始化
|
||||
├─resnext.py # ResNeXt101骨干
|
||||
├─utils
|
||||
├─_init_.py # 初始化
|
||||
|
@ -134,8 +136,11 @@ ResNeXt是ResNet网络的改进版本,比ResNet的网络多了块多了cardina
|
|||
│ ├──device_adapter.py # 设备配置
|
||||
│ ├──local_adapter.py # 本地设备配置
|
||||
│ ├──moxing_adapter.py # modelarts设备配置
|
||||
├──create_imagenet2012_label.py # 转换推理数据
|
||||
├──default_config.yaml # 参数配置
|
||||
├──eval.py # 评估网络
|
||||
├──export.py # 转换ckpt至MINDIR格式
|
||||
├──postprogress.py # 310推理后处理
|
||||
├──train.py # 训练网络
|
||||
├──mindspore_hub_conf.py # MindSpore Hub接口
|
||||
```
|
||||
|
@ -191,13 +196,37 @@ python eval.py --data_path ~/imagenet/val/ --platform Ascend --checkpoint_file_p
|
|||
bash scripts/run_eval.sh DEVICE_ID DATA_PATH CHECKPOINT_FILE_PATH DEVICE_TARGET
|
||||
```
|
||||
|
||||
## [推理过程](#contents)
|
||||
|
||||
### 用法
|
||||
|
||||
在执行推理之前,需要通过export.py导出mindir文件。
|
||||
目前仅可处理batch_Size为1。
|
||||
|
||||
## 模型导出
|
||||
|
||||
```shell
|
||||
python export.py --device_target [PLATFORM] --checkpoint_file_path [CKPT_PATH] --file_format [EXPORT_FORMAT]
|
||||
```
|
||||
|
||||
`EXPORT_FORMAT` 可选 ["AIR", "ONNX", "MINDIR"].
|
||||
`checkpoint_file_path` 参数为必填项
|
||||
`device_target` 可选 ["Ascend", "GPU"]
|
||||
`file_format` 可选 ["AIR", "MINDIR"]
|
||||
|
||||
```shell
|
||||
#Ascend310 推理
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
```
|
||||
|
||||
`DEVICE_ID` 可选,默认值为 0。
|
||||
|
||||
### 结果
|
||||
|
||||
推理结果保存在当前路径,可在acc.log中看到最终精度结果。
|
||||
|
||||
```log
|
||||
Total data:50000, top1 accuracy:0.79858, top5 accuracy:0.94716
|
||||
```
|
||||
|
||||
## 高级设置
|
||||
|
||||
|
@ -251,10 +280,25 @@ python export.py --device_target [PLATFORM] --checkpoint_file_path [CKPT_PATH] -
|
|||
|
||||
| **epochs** | Top1/Top5 |
|
||||
| :--------: | :-----------: |
|
||||
| 150 | 79.56%(TOP1)/94.68%(TOP5) |
|
||||
| 150 | 79.56%(TOP1)/94.68%(TOP5) |
|
||||
|
||||
#### 训练性能结果
|
||||
|
||||
| **NPUs** | train performance |
|
||||
| :------: | :---------------: |
|
||||
| 1 | 196.33image/sec |
|
||||
| 1 | 196.33image/sec |
|
||||
|
||||
### 310 推理性能
|
||||
|
||||
#### ResNeXt101 on ImageNet
|
||||
|
||||
| Parameters | Ascend |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | ResNeXt101 |
|
||||
| Resource | Ascend 310; OS Euler2.8 |
|
||||
| Uploaded Date | 22/06/2021 (month/day/year) |
|
||||
| MindSpore Version | 1.2.0 |
|
||||
| Dataset | ImageNet |
|
||||
| batch_size | 1 |
|
||||
| outputs | Accuracy |
|
||||
| Accuracy | TOP1: 79.85%, TOP5: 94.71% |
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
cmake_minimum_required(VERSION 3.14.1)
|
||||
project(Ascend310Infer)
|
||||
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||
option(MINDSPORE_PATH "mindspore install path" "")
|
||||
include_directories(${MINDSPORE_PATH})
|
||||
include_directories(${MINDSPORE_PATH}/include)
|
||||
include_directories(${PROJECT_SRC_ROOT})
|
||||
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||
|
||||
add_executable(main src/main.cc src/utils.cc)
|
||||
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,18 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
cmake . -DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
make
|
|
@ -0,0 +1,33 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <dirent.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "include/api/types.h"
|
||||
|
||||
DIR *OpenDir(std::string_view dirName);
|
||||
std::string RealPath(std::string_view path);
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||
std::vector<std::string> GetAllFiles(std::string dir_name);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,157 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <sys/time.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <dirent.h>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
|
||||
#include "../inc/utils.h"
|
||||
#include "include/dataset/execute.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
#include "include/dataset/vision.h"
|
||||
#include "include/dataset/vision_ascend.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/api/model.h"
|
||||
#include "include/api/serialization.h"
|
||||
#include "include/api/context.h"
|
||||
|
||||
using mindspore::Serialization;
|
||||
using mindspore::Model;
|
||||
using mindspore::Context;
|
||||
using mindspore::Status;
|
||||
using mindspore::ModelType;
|
||||
using mindspore::Graph;
|
||||
using mindspore::GraphCell;
|
||||
using mindspore::kSuccess;
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
using mindspore::dataset::Execute;
|
||||
using mindspore::dataset::TensorTransform;
|
||||
using mindspore::dataset::vision::Decode;
|
||||
using mindspore::dataset::vision::Resize;
|
||||
using mindspore::dataset::vision::CenterCrop;
|
||||
using mindspore::dataset::vision::Normalize;
|
||||
using mindspore::dataset::vision::HWC2CHW;
|
||||
|
||||
DEFINE_string(model_path, "", "model path");
|
||||
DEFINE_string(dataset, "ImageNet", "dataset: ImageNet");
|
||||
DEFINE_string(dataset_path, ".", "dataset path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (RealPath(FLAGS_model_path).empty()) {
|
||||
std::cout << "Invalid model" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::transform(FLAGS_dataset.begin(), FLAGS_dataset.end(), FLAGS_dataset.begin(), ::tolower);
|
||||
|
||||
auto context = std::make_shared<Context>();
|
||||
auto ascend310_info = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||
ascend310_info->SetDeviceID(FLAGS_device_id);
|
||||
context->MutableDeviceInfo().push_back(ascend310_info);
|
||||
|
||||
Graph graph;
|
||||
Status ret = Serialization::Load(FLAGS_model_path, ModelType::kMindIR, &graph);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "Load model failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
Model model;
|
||||
ret = model.Build(GraphCell(graph), context);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "ERROR: Build failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<MSTensor> modelInputs = model.GetInputs();
|
||||
|
||||
auto all_files = GetAllFiles(FLAGS_dataset_path);
|
||||
if (all_files.empty()) {
|
||||
std::cout << "ERROR: no input data." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::shared_ptr<TensorTransform> decode(new Decode());
|
||||
std::shared_ptr<TensorTransform> resize(new Resize({256, 256}));
|
||||
std::shared_ptr<TensorTransform> centerCrop(new CenterCrop({224, 224}));
|
||||
std::shared_ptr<TensorTransform> normImageNet(new Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375}));
|
||||
std::shared_ptr<TensorTransform> hwc2chw(new HWC2CHW());
|
||||
|
||||
mindspore::dataset::Execute transformImageNet({decode, resize, centerCrop, normImageNet, hwc2chw});
|
||||
|
||||
std::map<double, double> costTime_map;
|
||||
|
||||
size_t size = all_files.size();
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
struct timeval start;
|
||||
struct timeval end;
|
||||
double startTime_ms;
|
||||
double endTime_ms;
|
||||
std::vector<MSTensor> inputs;
|
||||
std::vector<MSTensor> outputs;
|
||||
|
||||
std::cout << "Start predict input files:" << all_files[i] << std::endl;
|
||||
mindspore::MSTensor image = ReadFileToTensor(all_files[i]);
|
||||
|
||||
if (FLAGS_dataset.compare("imagenet") == 0) {
|
||||
transformImageNet(image, &image);
|
||||
} else {
|
||||
std::cout << "unsupported dataset ...";
|
||||
return 1;
|
||||
}
|
||||
|
||||
inputs.emplace_back(modelInputs[0].Name(), modelInputs[0].DataType(), modelInputs[0].Shape(),
|
||||
image.Data().get(), image.DataSize());
|
||||
|
||||
gettimeofday(&start, NULL);
|
||||
model.Predict(inputs, &outputs);
|
||||
gettimeofday(&end, NULL);
|
||||
|
||||
startTime_ms = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||
endTime_ms = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||
costTime_map.insert(std::pair<double, double>(startTime_ms, endTime_ms));
|
||||
WriteResult(all_files[i], outputs);
|
||||
}
|
||||
double average = 0.0;
|
||||
int infer_cnt = 0;
|
||||
char tmpCh[256] = {0};
|
||||
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||
double diff = 0.0;
|
||||
diff = iter->second - iter->first;
|
||||
average += diff;
|
||||
infer_cnt++;
|
||||
}
|
||||
|
||||
average = average/infer_cnt;
|
||||
|
||||
snprintf(tmpCh, sizeof(tmpCh), "NN inference cost average time: %4.3f ms of infer_count %d\n", average, infer_cnt);
|
||||
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << infer_cnt << std::endl;
|
||||
std::string file_name = "./time_Result" + std::string("/test_perform_static.txt");
|
||||
std::ofstream file_stream(file_name.c_str(), std::ios::trunc);
|
||||
file_stream << tmpCh;
|
||||
file_stream.close();
|
||||
costTime_map.clear();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,145 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include "inc/utils.h"
|
||||
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string dirName) {
|
||||
struct dirent *filename;
|
||||
DIR *dir = OpenDir(dirName);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
std::vector<std::string> dirs;
|
||||
std::vector<std::string> files;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string dName = std::string(filename->d_name);
|
||||
if (dName == "." || dName == "..") {
|
||||
continue;
|
||||
} else if (filename->d_type == DT_DIR) {
|
||||
dirs.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||
} else if (filename->d_type == DT_REG) {
|
||||
files.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
for (auto d : dirs) {
|
||||
dir = OpenDir(d);
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string dName = std::string(filename->d_name);
|
||||
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||
continue;
|
||||
}
|
||||
files.emplace_back(std::string(d) + "/" + filename->d_name);
|
||||
}
|
||||
}
|
||||
std::sort(files.begin(), files.end());
|
||||
for (auto &f : files) {
|
||||
std::cout << "image file: " << f << std::endl;
|
||||
}
|
||||
return files;
|
||||
}
|
||||
|
||||
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||
std::string homePath = "./result_Files";
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
size_t outputSize;
|
||||
std::shared_ptr<const void> netOutput;
|
||||
netOutput = outputs[i].Data();
|
||||
outputSize = outputs[i].DataSize();
|
||||
int pos = imageFile.rfind('/');
|
||||
std::string fileName(imageFile, pos + 1);
|
||||
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
|
||||
std::string outFileName = homePath + "/" + fileName;
|
||||
FILE *outputFile = fopen(outFileName.c_str(), "wb");
|
||||
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||
fclose(outputFile);
|
||||
outputFile = nullptr;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||
if (file.empty()) {
|
||||
std::cout << "Pointer file is nullptr" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
std::ifstream ifs(file);
|
||||
if (!ifs.good()) {
|
||||
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
if (!ifs.is_open()) {
|
||||
std::cout << "File: " << file << "open failed" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
size_t size = ifs.tellg();
|
||||
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||
ifs.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
|
||||
DIR *OpenDir(std::string_view dirName) {
|
||||
if (dirName.empty()) {
|
||||
std::cout << " dirName is null ! " << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::string realPath = RealPath(dirName);
|
||||
struct stat s;
|
||||
lstat(realPath.c_str(), &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
DIR *dir;
|
||||
dir = opendir(realPath.c_str());
|
||||
if (dir == nullptr) {
|
||||
std::cout << "Can not open dir " << dirName << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||
return dir;
|
||||
}
|
||||
|
||||
std::string RealPath(std::string_view path) {
|
||||
char realPathMem[PATH_MAX] = {0};
|
||||
char *realPathRet = nullptr;
|
||||
realPathRet = realpath(path.data(), realPathMem);
|
||||
if (realPathRet == nullptr) {
|
||||
std::cout << "File: " << path << " is not exist.";
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string realPath(realPathMem);
|
||||
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||
return realPath;
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""create_imagenet2012_label"""
|
||||
import os
|
||||
import json
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="resnet imagenet2012 label")
|
||||
parser.add_argument("--img_path", type=str, required=True, help="imagenet2012 file path.")
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def create_label(file_path):
|
||||
print("[WARNING] Create imagenet label. Currently only use for Imagenet2012!")
|
||||
dirs = os.listdir(file_path)
|
||||
file_list = []
|
||||
for file in dirs:
|
||||
file_list.append(file)
|
||||
file_list = sorted(file_list)
|
||||
|
||||
total = 0
|
||||
img_label = {}
|
||||
for i, file_dir in enumerate(file_list):
|
||||
files = os.listdir(os.path.join(file_path, file_dir))
|
||||
for f in files:
|
||||
img_label[f] = i
|
||||
total += len(files)
|
||||
|
||||
with open("imagenet_label.json", "w+") as label:
|
||||
json.dump(img_label, label)
|
||||
|
||||
print("[INFO] Completed! Total {} data.".format(total))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
create_label(args.img_path)
|
|
@ -49,7 +49,7 @@ device_id: 0
|
|||
width: 224
|
||||
height: 224
|
||||
file_name: "resnext101"
|
||||
file_format: "AIR"
|
||||
file_format: "MINDIR"
|
||||
|
||||
---
|
||||
# Help description for each configuration
|
||||
|
|
|
@ -15,11 +15,23 @@
|
|||
"""
|
||||
resnext export mindir.
|
||||
"""
|
||||
import argparse
|
||||
import numpy as np
|
||||
from mindspore import context, Tensor, load_checkpoint, load_param_into_net, export
|
||||
from src.model_utils.config import config
|
||||
from src.image_classification import get_network
|
||||
|
||||
parser = argparse.ArgumentParser(description='checkpoint export')
|
||||
parser.add_argument("--device_id", type=int, default=0, help="Device id")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
|
||||
parser.add_argument("--checkpoint_file_path", type=str, required=True, help="Checkpoint file path.")
|
||||
parser.add_argument('--width', type=int, default=224, help='input width')
|
||||
parser.add_argument('--height', type=int, default=224, help='input height')
|
||||
parser.add_argument("--file_name", type=str, default="resnext101", help="output file name.")
|
||||
parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format")
|
||||
parser.add_argument("--device_target", type=str, default="Ascend",
|
||||
choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)")
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
|
||||
if config.device_target == "Ascend":
|
||||
|
@ -28,7 +40,7 @@ if config.device_target == "Ascend":
|
|||
if __name__ == '__main__':
|
||||
net = get_network(num_classes=config.num_classes, platform=config.device_target)
|
||||
|
||||
param_dict = load_checkpoint(config.checkpoint_file_path)
|
||||
param_dict = load_checkpoint(args.checkpoint_file_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
input_shp = [config.batch_size, 3, config.height, config.width]
|
||||
input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32))
|
||||
|
|
|
@ -0,0 +1,48 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""post process for 310 inference"""
|
||||
import os
|
||||
import json
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
batch_size = 1
|
||||
parser = argparse.ArgumentParser(description="resnet inference")
|
||||
parser.add_argument("--result_path", type=str, required=True, help="result files path.")
|
||||
parser.add_argument("--label_path", type=str, required=True, help="image file path.")
|
||||
args = parser.parse_args()
|
||||
|
||||
def get_result(result_path, label_path):
|
||||
files = os.listdir(result_path)
|
||||
with open(label_path, "r") as label:
|
||||
labels = json.load(label)
|
||||
|
||||
top1 = 0
|
||||
top5 = 0
|
||||
total_data = len(files)
|
||||
for file in files:
|
||||
img_ids_name = file.split('_0.')[0]
|
||||
data_path = os.path.join(result_path, img_ids_name + "_0.bin")
|
||||
result = np.fromfile(data_path, dtype=np.float16).reshape(1, 1000) #reshape(batch_size, num_classes)
|
||||
predict = np.argsort(-result[0], axis=-1)
|
||||
if labels[img_ids_name+".JPEG"] == predict[0]:
|
||||
top1 += 1
|
||||
if labels[img_ids_name+".JPEG"] in predict[:5]:
|
||||
top5 += 1
|
||||
|
||||
print(f"Total data: {total_data}, top1 accuracy: {top1/total_data}, top5 accuracy: {top5/total_data}.")
|
||||
|
||||
if __name__ == '__main__':
|
||||
get_result(args.result_path, args.label_path)
|
|
@ -0,0 +1,99 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 2 || $# -gt 3 ]]; then
|
||||
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATA_PATH] [DEVICE_ID]
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
model=$(get_real_path $1)
|
||||
data_path=$(get_real_path $2)
|
||||
|
||||
device_id=0
|
||||
if [ $# == 3 ]; then
|
||||
device_id=$3
|
||||
fi
|
||||
|
||||
echo "mindir name: "$model
|
||||
echo "dataset path: "$data_path
|
||||
echo "device id: "$device_id
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||
else
|
||||
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||
fi
|
||||
|
||||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer/ || exit
|
||||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
bash build.sh &> build.log
|
||||
}
|
||||
|
||||
function infer()
|
||||
{
|
||||
cd - || exit
|
||||
if [ -d result_Files ]; then
|
||||
rm -rf ./result_Files
|
||||
fi
|
||||
if [ -d time_Result ]; then
|
||||
rm -rf ./time_Result
|
||||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
../ascend310_infer/main --model_path=$model --dataset_path=$data_path --device_id=$device_id &> infer.log
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
{
|
||||
python3.7 ../create_imagenet2012_label.py --img_path=$data_path
|
||||
python3.7 ../postprocess.py --result_path=./result_Files --label_path=./imagenet_label.json &> acc.log &
|
||||
}
|
||||
|
||||
compile_app
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "compile app code failed"
|
||||
exit 1
|
||||
fi
|
||||
infer
|
||||
if [ $? -ne 0 ]; then
|
||||
echo " execute inference failed"
|
||||
exit 1
|
||||
fi
|
||||
cal_acc
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "calculate accuracy failed"
|
||||
exit 1
|
||||
fi
|
Loading…
Reference in New Issue