!7018 scale and stack fp16

Merge pull request !7018 from zhaozhenlong/lite/op/scale_stack_fp16
This commit is contained in:
mindspore-ci-bot 2020-09-30 09:22:45 +08:00 committed by Gitee
commit 6c3cfe3036
15 changed files with 837 additions and 10 deletions

View File

@ -0,0 +1,223 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp16/scale_fp16.h"
void ScaleInner(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int outer_start,
int outer_end, int axis_size, int inner_size) {
for (int out = outer_start; out < outer_end; out++) {
int out_offset = out * axis_size * inner_size;
for (int i = 0; i < axis_size; i++) {
int axis_offset = out_offset + i * inner_size;
int in_index = 0;
#ifdef ENABLE_ARM64
for (; in_index < inner_size - 8; in_index += 8) {
int in_offset = axis_offset + in_index;
float16x8_t data = vld1q_f16(in_data + in_offset);
float16x8_t scale_8 = vdupq_n_f16(scale[i]);
float16x8_t offset_8 = vdupq_n_f16(offset[i]);
float16x8_t reslut = vfmaq_f16(offset_8, data, scale_8);
vst1q_f16(out_data + in_offset, reslut);
}
#endif
for (; in_index < inner_size; in_index++) {
int in_offset = axis_offset + in_index;
out_data[in_offset] = in_data[in_offset] * scale[i] + offset[i];
}
}
}
}
void ScaleAxis(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int outer_start,
int outer_end, int axis_size) {
for (int out = outer_start; out < outer_end; out++) {
int out_offset = out * axis_size;
int index = 0;
#ifdef ENABLE_ARM64
for (; index < axis_size - 8; index += 8) {
int in_offset = out_offset + index;
float16x8_t data = vld1q_f16(in_data + in_offset);
float16x8_t scale_8 = vld1q_f16(scale + index);
float16x8_t offset_8 = vld1q_f16(offset + index);
float16x8_t reslut = vfmaq_f16(offset_8, data, scale_8);
vst1q_f16(out_data + in_offset, reslut);
}
#endif
for (; index < axis_size; index++) {
int in_offset = out_offset + index;
out_data[in_offset] = in_data[in_offset] * scale[index] + offset[index];
}
}
}
void DoScaleFp16(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int task_id,
ScaleParameter *scale_param) {
int outer_step = UP_DIV(scale_param->outer_size_, scale_param->op_parameter_.thread_num_);
int outer_start = task_id * outer_step;
int outer_end = MSMIN(outer_start + outer_step, scale_param->outer_size_);
if (scale_param->inner_size_ == 1) {
ScaleAxis(in_data, out_data, scale, offset, outer_start, outer_end, scale_param->axis_size_);
} else {
ScaleInner(in_data, out_data, scale, offset, outer_start, outer_end, scale_param->axis_size_,
scale_param->inner_size_);
}
}
void ScaleInnerRelu(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int outer_start,
int outer_end, int axis_size, int inner_size) {
#ifdef ENABLE_ARM64
float16x8_t zeros = {0, 0, 0, 0, 0, 0, 0, 0};
#endif
for (int out = outer_start; out < outer_end; out++) {
int out_offset = out * axis_size * inner_size;
for (int i = 0; i < axis_size; i++) {
int axis_offset = out_offset + i * inner_size;
int in_index = 0;
#ifdef ENABLE_ARM64
for (; in_index < inner_size - 8; in_index += 8) {
int in_offset = axis_offset + in_index;
float16x8_t data = vld1q_f16(in_data + in_offset);
float16x8_t scale_8 = vdupq_n_f16(scale[i]);
float16x8_t offset_8 = vdupq_n_f16(offset[i]);
float16x8_t tmp = vfmaq_f16(offset_8, data, scale_8);
float16x8_t result = vmaxq_f16(tmp, zeros);
vst1q_f16(out_data + in_offset, result);
}
#endif
for (; in_index < inner_size; in_index++) {
int in_offset = axis_offset + in_index;
float tmp = in_data[in_offset] * scale[i] + offset[i];
out_data[in_offset] = tmp > 0.0f ? tmp : 0.0f;
}
}
}
}
void ScaleAxisRelu(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int outer_start,
int outer_end, int axis_size) {
#ifdef ENABLE_ARM64
float16x8_t zeros = {0, 0, 0, 0, 0, 0, 0, 0};
#endif
for (int out = outer_start; out < outer_end; out++) {
int out_offset = out * axis_size;
int index = 0;
#ifdef ENABLE_ARM64
for (; index < axis_size - 8; index += 8) {
int in_offset = out_offset + index;
float16x8_t data = vld1q_f16(in_data + in_offset);
float16x8_t scale_8 = vld1q_f16(scale + index);
float16x8_t offset_8 = vld1q_f16(offset + index);
float16x8_t tmp = vfmaq_f16(offset_8, data, scale_8);
float16x8_t result = vmaxq_f16(tmp, zeros);
vst1q_f16(out_data + in_offset, result);
}
#endif
for (; index < axis_size; index++) {
int in_offset = out_offset + index;
float tmp = in_data[in_offset] * scale[index] + offset[index];
out_data[in_offset] = tmp > 0.0f ? tmp : 0.0f;
}
}
}
void DoScaleReluFp16(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int task_id,
ScaleParameter *scale_param) {
int outer_step = UP_DIV(scale_param->outer_size_, scale_param->op_parameter_.thread_num_);
int outer_start = task_id * outer_step;
int outer_end = MSMIN(outer_start + outer_step, scale_param->outer_size_);
if (scale_param->inner_size_ == 1) {
ScaleAxisRelu(in_data, out_data, scale, offset, outer_start, outer_end, scale_param->axis_size_);
} else {
ScaleInnerRelu(in_data, out_data, scale, offset, outer_start, outer_end, scale_param->axis_size_,
scale_param->inner_size_);
}
}
void ScaleInnerRelu6(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int outer_start,
int outer_end, int axis_size, int inner_size) {
#ifdef ENABLE_ARM64
float16x8_t zeros = {0, 0, 0, 0, 0, 0, 0, 0};
float16x8_t bounds = {6, 6, 6, 6, 6, 6, 6, 6};
#endif
for (int out = outer_start; out < outer_end; out++) {
int out_offset = out * axis_size * inner_size;
for (int i = 0; i < axis_size; i++) {
int axis_offset = out_offset + i * inner_size;
int in_index = 0;
#ifdef ENABLE_ARM64
for (; in_index < inner_size - 8; in_index += 8) {
int in_offset = axis_offset + in_index;
float16x8_t data = vld1q_f16(in_data + in_offset);
float16x8_t scale_8 = vdupq_n_f16(scale[i]);
float16x8_t offset_8 = vdupq_n_f16(offset[i]);
float16x8_t tmp = vfmaq_f16(offset_8, data, scale_8);
float16x8_t result = vminq_f16(vmaxq_f16(tmp, zeros), bounds);
vst1q_f16(out_data + in_offset, result);
}
#endif
for (; in_index < inner_size; in_index++) {
int in_offset = axis_offset + in_index;
float tmp = in_data[in_offset] * scale[i] + offset[i];
out_data[in_offset] = MSMIN(MSMAX(tmp, 0.0f), 6.0f);
}
}
}
}
void ScaleAxisRelu6(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int outer_start,
int outer_end, int axis_size) {
#ifdef ENABLE_ARM64
float16x8_t zeros = {0, 0, 0, 0, 0, 0, 0, 0};
float16x8_t bounds = {6, 6, 6, 6, 6, 6, 6, 6};
#endif
for (int out = outer_start; out < outer_end; out++) {
int out_offset = out * axis_size;
int index = 0;
#ifdef ENABLE_ARM64
for (; index < axis_size - 8; index += 8) {
int in_offset = out_offset + index;
float16x8_t data = vld1q_f16(in_data + in_offset);
float16x8_t scale_8 = vld1q_f16(scale + index);
float16x8_t offset_8 = vld1q_f16(offset + index);
float16x8_t tmp = vfmaq_f16(offset_8, data, scale_8);
float16x8_t result = vminq_f16(vmaxq_f16(tmp, zeros), bounds);
vst1q_f16(out_data + in_offset, result);
}
#endif
for (; index < axis_size; index++) {
int in_offset = out_offset + index;
float tmp = in_data[in_offset] * scale[index] + offset[index];
out_data[in_offset] = MSMIN(MSMAX(tmp, 0.0f), 6.0f);
}
}
}
void DoScaleRelu6Fp16(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int task_id,
ScaleParameter *scale_param) {
int outer_step = UP_DIV(scale_param->outer_size_, scale_param->op_parameter_.thread_num_);
int outer_start = task_id * outer_step;
int outer_end = MSMIN(outer_start + outer_step, scale_param->outer_size_);
if (scale_param->inner_size_ == 1) {
ScaleAxisRelu6(in_data, out_data, scale, offset, outer_start, outer_end, scale_param->axis_size_);
} else {
ScaleInnerRelu6(in_data, out_data, scale, offset, outer_start, outer_end, scale_param->axis_size_,
scale_param->inner_size_);
}
}

View File

@ -0,0 +1,38 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_SCALE_FP16_H_
#define MINDSPORE_LITE_NNACL_SCALE_FP16_H_
#include "nnacl/op_base.h"
#include "nnacl/scale.h"
#ifdef ENABLE_NEON
#include <arm_neon.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
void DoScaleFp16(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int task_id,
ScaleParameter *scale_param);
void DoScaleReluFp16(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int task_id,
ScaleParameter *scale_param);
void DoScaleRelu6Fp16(float16_t *in_data, float16_t *out_data, float16_t *scale, float16_t *offset, int task_id,
ScaleParameter *scale_param);
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_SCALE_FP16_H_

View File

@ -0,0 +1,54 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp16/stack_fp16.h"
#include "nnacl/arithmetic_common.h"
size_t GetStackCopyNum(int axis, int *in_shape, size_t shape_size) {
size_t one_input_size = 1;
for (size_t i = 0; i < shape_size; ++i) {
one_input_size *= in_shape[i];
}
int in_strides[4];
ComputeStrides(in_shape, in_strides, shape_size);
size_t copy_num = axis > 0 ? in_strides[axis - 1] : one_input_size;
return copy_num;
}
size_t GetStackPreAxisCount(const int *in_shape, int axis) {
size_t pre_axis_count = 1;
for (size_t i = 0; i < axis; ++i) {
pre_axis_count *= in_shape[i];
}
return pre_axis_count;
}
void DoStackFp16(const float16_t *const *inputs, size_t input_num, int *in_shape, size_t shape_size, int axis,
float16_t *output) {
size_t copy_num = GetStackCopyNum(axis, in_shape, shape_size);
size_t copy_size = copy_num * sizeof(float16_t);
size_t pre_axis_count = GetStackPreAxisCount(in_shape, axis);
size_t in_offset = 0;
size_t out_offset = 0;
for (size_t i = 0; i < pre_axis_count; ++i) {
for (size_t j = 0; j < input_num; ++j) {
memcpy(output + out_offset, inputs[j] + in_offset, copy_size);
out_offset += copy_num;
}
in_offset += copy_num;
}
}

View File

@ -0,0 +1,33 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_FP16_STACK_FP16_H_
#define MINDSPORE_LITE_NNACL_FP16_STACK_FP16_H_
#include "nnacl/op_base.h"
#ifdef ENABLE_NEON
#include <arm_neon.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
void DoStackFp16(const float16_t *const *inputs, size_t input_num, int *in_shape, size_t shape_size, int axis,
float16_t *output);
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_FP16_STACK_FP16_H_

View File

@ -18,11 +18,6 @@
#include "nnacl/op_base.h"
typedef struct StackParameter {
OpParameter op_parameter_;
int32_t axis_;
} StackParameter;
#ifdef __cplusplus
extern "C" {
#endif

View File

@ -0,0 +1,26 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_STACK_PARAMETER_H_
#define MINDSPORE_LITE_NNACL_STACK_PARAMETER_H_
#include "nnacl/op_base.h"
typedef struct StackParameter {
OpParameter op_parameter_;
int32_t axis_;
} StackParameter;
#endif // MINDSPORE_LITE_NNACL_STACK_PARAMETER_H_

View File

@ -126,7 +126,7 @@
#include "nnacl/prelu_parameter.h"
#include "nnacl/shape.h"
#include "nnacl/fp32/constant_of_shape.h"
#include "nnacl/fp32/stack.h"
#include "nnacl/stack_parameter.h"
#include "nnacl/unstack.h"
#include "nnacl/depth_to_space.h"
#include "nnacl/conv_parameter.h"

View File

@ -0,0 +1,214 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp16/scale_fp16.h"
#include <string.h>
#include <vector>
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
#include "src/runtime/runtime_api.h"
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
#include "nnacl/fp16/scale_fp16.h"
#include "nnacl/fp16/cast_fp16.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Scale;
namespace mindspore::kernel {
int ScaleFp16CPUKernel::InitScaleOffset() {
auto input_tensor = in_tensors_.at(0);
malloc_input_ = input_tensor->data_type() == kNumberTypeFloat32;
auto scale_tensor = in_tensors_.at(1);
malloc_scale_ = scale_tensor->data_type() == kNumberTypeFloat32;
if (in_tensors_.size() == 2) {
malloc_offset_ = true;
} else {
auto offset_tensor = in_tensors_.at(2);
malloc_offset_ = offset_tensor->data_type() == kNumberTypeFloat32;
}
auto output_tensor = out_tensors_.at(0);
malloc_output_ = output_tensor->data_type() == kNumberTypeFloat32;
return RET_OK;
}
int ScaleFp16CPUKernel::Init() {
if (in_tensors_.size() < 2 || in_tensors_.size() > 3) {
MS_LOG(ERROR) << "inputs to Scale operator should be 2 or 3, but " << in_tensors_.size() << " is given.";
return RET_ERROR;
}
if (!InferShapeDone()) {
return RET_OK;
}
ReSize();
return RET_OK;
}
int ScaleFp16CPUKernel::ReSize() {
auto ret = CalculateParameter();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Scale fp16 CalculateParameter failed.";
return RET_ERROR;
}
return RET_OK;
}
int ScaleFp16CPUKernel::Scale(int task_id) {
switch (scale_param_->activation_type_) {
case schema::ActivationType_RELU6:
DoScaleRelu6Fp16(input_, output_, scale_, offset_, task_id, scale_param_);
break;
case schema::ActivationType_RELU:
DoScaleReluFp16(input_, output_, scale_, offset_, task_id, scale_param_);
break;
case schema::ActivationType_NO_ACTIVATION:
DoScaleFp16(input_, output_, scale_, offset_, task_id, scale_param_);
break;
default:
MS_LOG(ERROR) << "ScaleFp16 does not support activation type " << scale_param_->activation_type_;
return RET_ERROR;
}
return RET_OK;
}
int ScaleRun(void *cdata, int task_id) {
auto scale = reinterpret_cast<ScaleFp16CPUKernel *>(cdata);
auto ret = scale->Scale(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "ScaleRun error task_id[" << task_id << "] error_code[" << ret << "]";
return RET_ERROR;
}
return RET_OK;
}
int ScaleFp16CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
ret = InitScaleOffset();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Scale fp16 InitScaleOffset failed.";
return RET_ERROR;
}
ret = MallocAssignTmpBuffer();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Scale Fp16 malloc tmp buffer failed";
FreeTmpBuffer();
return ret;
}
ret = ParallelLaunch(this->context_->thread_pool_, ScaleRun, this, op_parameter_->thread_num_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "Scale error error_code[" << ret << "]";
return RET_ERROR;
}
// if output tensor is fp32, we need to transform
if (malloc_output_) {
auto out_tensor = out_tensors_.at(0);
Float16ToFloat32(output_, reinterpret_cast<float *>(out_tensor->MutableData()), out_tensor->ElementsNum());
}
FreeTmpBuffer();
return RET_OK;
}
int ScaleFp16CPUKernel::MallocAssignTmpBuffer() {
input_ = ConvertInputFp32toFp16(in_tensors_.at(0), context_);
if (input_ == nullptr) {
return RET_ERROR;
}
scale_ = ConvertInputFp32toFp16(in_tensors_.at(1), context_);
if (scale_ == nullptr) {
return RET_ERROR;
}
if (in_tensors_.size() == 3) {
offset_ = ConvertInputFp32toFp16(in_tensors_.at(2), context_);
if (offset_ == nullptr) {
return RET_ERROR;
}
} else {
offset_ =
reinterpret_cast<float16_t *>(context_->allocator->Malloc(in_tensors_.at(1)->ElementsNum() * sizeof(float16_t)));
if (offset_ == nullptr) {
MS_LOG(ERROR) << "Malloc data failed";
return RET_ERROR;
}
memset(offset_, 0, in_tensors_.at(1)->ElementsNum() * sizeof(float16_t));
}
output_ = MallocOutputFp16(out_tensors_.at(0), context_);
if (output_ == nullptr) {
return RET_ERROR;
}
return RET_OK;
}
void ScaleFp16CPUKernel::FreeTmpBuffer() {
if (malloc_input_ && input_ != nullptr) {
context_->allocator->Free(input_);
input_ = nullptr;
}
if (malloc_scale_ && scale_ != nullptr) {
context_->allocator->Free(scale_);
scale_ = nullptr;
}
if (malloc_offset_ && offset_ != nullptr) {
context_->allocator->Free(offset_);
offset_ = nullptr;
}
if (malloc_output_ && output_ != nullptr) {
context_->allocator->Free(output_);
output_ = nullptr;
}
}
kernel::LiteKernel *CpuScaleFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
MS_ASSERT(desc.type == schema::PrimitiveType_Scale);
if (opParameter == nullptr) {
MS_LOG(ERROR) << "opParameter is nullptr";
return nullptr;
}
auto *kernel = new (std::nothrow) ScaleFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "New kernel fails.";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Init kernel failed, name: " << opParameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_));
delete kernel;
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Scale, CpuScaleFp16KernelCreator)
} // namespace mindspore::kernel

View File

@ -0,0 +1,58 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_SCALE_FP16_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_SCALE_FP16_H_
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/fp32/scale.h"
#include "nnacl/scale.h"
namespace mindspore::kernel {
class ScaleFp16CPUKernel : public ScaleCPUKernel {
public:
ScaleFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: ScaleCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~ScaleFp16CPUKernel() = default;
int Init() override;
int ReSize() override;
int Run() override;
int InitScaleOffset() override;
int Scale(int task_id);
private:
int MallocAssignTmpBuffer();
void FreeTmpBuffer();
private:
bool malloc_input_ = false;
bool malloc_scale_ = false;
bool malloc_offset_ = false;
bool malloc_output_ = false;
float16_t *input_ = nullptr;
float16_t *scale_ = nullptr;
float16_t *offset_ = nullptr;
float16_t *output_ = nullptr;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_SCALE_FP16_H_

View File

@ -0,0 +1,134 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp16/stack_fp16.h"
#include <vector>
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "nnacl/stack_parameter.h"
#include "include/errorcode.h"
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
#include "nnacl/fp16/cast_fp16.h"
#include "nnacl/fp16/stack_fp16.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Stack;
namespace mindspore::kernel {
int StackFp16CPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
void StackFp16CPUKernel::InitMallocFlags() {
malloc_buffers_.resize(in_tensors_.size());
for (size_t i = 0; i < in_tensors_.size(); ++i) {
malloc_buffers_[i] = in_tensors_[i]->data_type() == kNumberTypeFloat32;
}
malloc_out = out_tensors_[0]->data_type() == kNumberTypeFloat32;
}
int StackFp16CPUKernel::MallocAssignBuffer() {
buffers_.resize(in_tensors_.size(), nullptr);
for (size_t i = 0; i < in_tensors_.size(); ++i) {
buffers_[i] = ConvertInputFp32toFp16(in_tensors_[i], context_);
if (buffers_[i] == nullptr) {
return RET_ERROR;
}
}
out_buffer_ = nullptr;
out_buffer_ = MallocOutputFp16(out_tensors_[0], context_);
if (out_buffer_ == nullptr) {
return RET_ERROR;
}
return RET_OK;
}
void StackFp16CPUKernel::FreeBuffer() {
for (size_t i = 0; i < buffers_.size(); ++i) {
if (malloc_buffers_[i] && buffers_[i] != nullptr) {
context_->allocator->Free(buffers_[i]);
buffers_[i] = nullptr;
}
}
if (malloc_out && out_buffer_ != nullptr) {
context_->allocator->Free(out_buffer_);
out_buffer_ = nullptr;
}
}
int StackFp16CPUKernel::Run() {
auto ret = Prepare();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Prepare fail!ret: " << ret;
return ret;
}
size_t inputs_num = in_tensors_.size();
auto input0 = in_tensors_[0];
if (inputs_num == 1) {
memcpy(out_tensors_[0]->MutableData(), input0->MutableData(), input0->Size());
return RET_OK;
}
InitMallocFlags();
ret = MallocAssignBuffer();
if (ret != RET_OK) {
FreeBuffer();
return ret;
}
auto input0_shape = input0->shape();
DoStackFp16(buffers_.data(), inputs_num, input0_shape.data(), input0_shape.size(), axis_, out_buffer_);
// if output tensor is fp32, we need to transform
if (malloc_out) {
auto out_tensor = out_tensors_.at(0);
Float16ToFloat32(out_buffer_, reinterpret_cast<float *>(out_tensor->MutableData()), out_tensor->ElementsNum());
}
FreeBuffer();
return RET_OK;
}
kernel::LiteKernel *CpuStackFp16KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *op_parameter,
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
if (op_parameter == nullptr) {
MS_LOG(ERROR) << "Input op_parameter is nullptr!";
return nullptr;
}
MS_ASSERT(desc.type == schema::PrimitiveType_Stack);
auto *kernel = new (std::nothrow) StackFp16CPUKernel(op_parameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new StackFp16CPUKernel fail!";
return nullptr;
}
auto ret = kernel->Init();
if (ret != RET_OK) {
delete kernel;
MS_LOG(ERROR) << "Init kernel failed, name: " << op_parameter->name_ << ", type: "
<< schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_));
return nullptr;
}
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Stack, CpuStackFp16KernelCreator)
} // namespace mindspore::kernel

View File

@ -0,0 +1,49 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_STACK_FP16_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_STACK_FP16_H_
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/fp32/stack.h"
namespace mindspore::kernel {
class StackFp16CPUKernel : public StackCPUKernel {
public:
StackFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: StackCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~StackFp16CPUKernel() = default;
int Init() override;
int Run() override;
private:
void InitMallocFlags();
int MallocAssignBuffer();
void FreeBuffer();
private:
std::vector<bool> malloc_buffers_;
std::vector<float16_t *> buffers_;
float16_t *out_buffer_;
bool malloc_out;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP16_STACK_FP16_H_

View File

@ -138,7 +138,7 @@ int ScaleCPUKernel::Init() {
int ScaleCPUKernel::ReSize() {
auto ret = CalculateParameter();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Scale fp32 InitParameter failed.";
MS_LOG(ERROR) << "Scale fp32 CalculateParameter failed.";
return RET_ERROR;
}

View File

@ -37,15 +37,17 @@ class ScaleCPUKernel : public LiteKernel {
int ReSize() override;
int Run() override;
int CalculateParameter();
int InitScaleOffset();
virtual int InitScaleOffset();
int Scale(int task_id);
protected:
ScaleParameter *scale_param_;
private:
float *input_ptr_ = nullptr;
float *scale_ = nullptr;
float *offset_ = nullptr;
float *output_ptr_ = nullptr;
ScaleParameter *scale_param_;
};
} // namespace mindspore::kernel

View File

@ -18,6 +18,7 @@
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "nnacl/fp32/stack.h"
#include "nnacl/stack_parameter.h"
#include "include/errorcode.h"
using mindspore::lite::KernelRegistrar;

View File

@ -33,7 +33,7 @@ class StackCPUKernel : public LiteKernel {
int ReSize() override;
int Run() override;
private:
protected:
int axis_;
};
} // namespace mindspore::kernel