add some allreduce st test_cases in pynative mode

This commit is contained in:
lvchangquan 2021-05-11 16:57:55 +08:00
parent 837d6e71de
commit 6ae6a27688
4 changed files with 187 additions and 6 deletions

View File

@ -16,12 +16,11 @@
"""test bert thor performance with 8p on mlperf dataset"""
import os
from multiprocessing import Process
from multiprocessing import Process, Queue
import pytest
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
import mindspore.dataset as dataset
from mindspore import dtype as mstype
from mindspore.ops import operations as P
import mindspore.communication.management as D
@ -31,7 +30,6 @@ from mindspore.context import ParallelMode
MINDSPORE_HCCL_CONFIG_PATH = "/home/workspace/mindspore_config/hccl/rank_table_8p.json"
np.random.seed(1)
dataset.config.set_seed(1)
os.environ['GLOG_v'] = str(2)
class AllReduceNet(nn.Cell):
@ -42,7 +40,7 @@ class AllReduceNet(nn.Cell):
def construct(self, x):
return self.all_reduce(x)
def train_allreduce_8p(device_id, device_num):
def train_allreduce_8p(q, device_id, device_num):
os.system("mkdir " + str(device_id))
os.chdir(str(device_id))
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend", device_id=device_id)
@ -58,7 +56,7 @@ def train_allreduce_8p(device_id, device_num):
input_x = np.ones([32, 255, 255, 3]).astype(np.float32)
except_output = input_x * 8
output = net(Tensor(input_x, mstype.float32))
assert np.allclose(output.asnumpy(), except_output)
q.put(np.allclose(output.asnumpy(), except_output))
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@ -67,9 +65,10 @@ def train_allreduce_8p(device_id, device_num):
def test_pynative_hccl_8p():
device_num = 8
process = []
q = Queue()
for i in range(device_num):
device_id = i
process.append(Process(target=train_allreduce_8p, args=(device_id, device_num)))
process.append(Process(target=train_allreduce_8p, args=(q, device_id, device_num)))
for i in range(device_num):
process[i].start()
@ -79,6 +78,10 @@ def test_pynative_hccl_8p():
for i in range(device_num):
process[i].join()
# check result
for i in range(device_num):
assert q.get()
for i in range(device_num):
os.system("rm -rf " + str(i))

View File

@ -0,0 +1,99 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test hccl allreduce performance with 8p"""
import os
from multiprocessing import Process, Queue
import pytest
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import dtype as mstype
from mindspore.ops import operations as P
import mindspore.communication.management as D
from mindspore import context
from mindspore.context import ParallelMode
MINDSPORE_HCCL_CONFIG_PATH = "/home/workspace/mindspore_config/hccl/rank_table_8p.json"
np.random.seed(1)
os.environ['GLOG_v'] = str(2)
class AllReduceNet(nn.Cell):
def __init__(self):
super(AllReduceNet, self).__init__()
self.mul = P.Mul()
self.all_reduce = P.AllReduce()
self.add = P.Add()
def construct(self, x):
x = self.mul(x, 2)
y1 = Tensor(np.array([[2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2]])).astype(np.float32)
z = self.add(x, y1)
z = self.all_reduce(z)
y2 = Tensor(np.array([[-16, -16, -16, -16], [-16, -16, -16, -16], [-16, -16, -16, -16]])).astype(np.float32)
out = self.add(z, y2)
out = self.all_reduce(out)
out = self.mul(out, 2)
return out
def train_allreduce_8p(q, device_id, device_num):
os.system("mkdir " + str(device_id))
os.chdir(str(device_id))
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend", device_id=device_id)
os.environ['MINDSPORE_HCCL_CONFIG_PATH'] = MINDSPORE_HCCL_CONFIG_PATH
os.environ['RANK_ID'] = str(device_id)
os.environ['RANK_SIZE'] = str(device_num)
D.init()
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=False,
device_num=device_num)
net = AllReduceNet()
input_x = np.ones([3, 4]).astype(np.float32)
output = net(Tensor(input_x, mstype.float32))
q.put(output)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_single
def test_pynative_hccl_allreduce_8p():
device_num = 8
process = []
q = Queue()
for i in range(device_num):
device_id = i
process.append(Process(target=train_allreduce_8p, args=(q, device_id, device_num)))
for i in range(device_num):
process[i].start()
print("Waiting for all subprocesses done...")
for i in range(device_num):
process[i].join()
# check result
for i in range(device_num):
expect_output = [[256, 256, 256, 256], [256, 256, 256, 256], [256, 256, 256, 256]]
output = Tensor(q.get())
assert np.allclose(output.asnumpy(), expect_output)
for i in range(device_num):
os.system("rm -rf " + str(i))
print("End training...")

View File

@ -0,0 +1,24 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import pytest
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_single
def test_pynative_nccl_allreduce():
return_code = os.system("mpirun -n 8 pytest -s test_pynative_nccl_allreduce.py")
assert return_code == 0

View File

@ -0,0 +1,55 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test nccl allreduce performance with 8p"""
import os
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import dtype as mstype
from mindspore.ops import operations as P
from mindspore import context
from mindspore.communication.management import init
np.random.seed(1)
os.environ['GLOG_v'] = str(2)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
init()
class AllReduceNet(nn.Cell):
def __init__(self):
super(AllReduceNet, self).__init__()
self.mul = P.Mul()
self.all_reduce = P.AllReduce()
self.add = P.Add()
def construct(self, x):
x = self.mul(x, 2)
y1 = Tensor(np.array([[2, 2, 2, 2], [2, 2, 2, 2], [2, 2, 2, 2]])).astype(np.float32)
z = self.add(x, y1)
z = self.all_reduce(z)
y2 = Tensor(np.array([[-16, -16, -16, -16], [-16, -16, -16, -16], [-16, -16, -16, -16]])).astype(np.float32)
out = self.add(z, y2)
out = self.all_reduce(out)
out = self.mul(out, 2)
return out
def test_pynative_nccl_allreduce_8p():
net = AllReduceNet()
input_x = np.ones([3, 4]).astype(np.float32)
expect_output = [[256, 256, 256, 256], [256, 256, 256, 256], [256, 256, 256, 256]]
output = net(Tensor(input_x, mstype.float32))
assert np.allclose(output.asnumpy(), expect_output)