!9422 Add dynamic supports to op allreduce and reducesum on gpu

From: @yuan_shen_zhou
Reviewed-by: @liangchenghui,@linqingke
Signed-off-by: @liangchenghui
This commit is contained in:
mindspore-ci-bot 2020-12-04 15:44:54 +08:00 committed by Gitee
commit 6acf699302
8 changed files with 122 additions and 16 deletions

View File

@ -1,5 +1,5 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -133,6 +133,7 @@ class ArrayReduceGpuKernel : public GpuKernel {
input_size_ = 0;
output_size_ = 0;
workspace_size_ = 0;
axis_.clear();
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();

View File

@ -40,8 +40,6 @@ template <typename S>
__global__ void CheckValidKernel(const size_t size, const unsigned char *box,
const unsigned char *img_metas, S *valid) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
const size_t left_x = i * 4;
const size_t left_y = i * 4 + 1;
const size_t right_x = i * 4 + 2;
const size_t right_y = i * 4 + 3;

View File

@ -43,14 +43,7 @@ const std::map<std::string, NcclKernelType> kNcclTypeMap = {
template <typename T>
class NcclCollectiveGpuKernel : public NcclGpuKernel {
public:
NcclCollectiveGpuKernel()
: nccl_kernel_type_(NCCL_INVALID_TYPE),
nccl_reduce_type_(ncclSum),
input_size_(0),
output_size_(0),
root_(0),
collective_handle_(nullptr),
comm_stream_(nullptr) {}
NcclCollectiveGpuKernel() { ResetResource(); }
~NcclCollectiveGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
@ -82,6 +75,7 @@ class NcclCollectiveGpuKernel : public NcclGpuKernel {
}
return true;
}
bool Init(const CNodePtr &kernel_node) override {
nccl_data_type_ = nccl_dtype(AnfAlgo::GetInputDeviceDataType(kernel_node, 0));
InferCommType(kernel_node);
@ -89,7 +83,7 @@ class NcclCollectiveGpuKernel : public NcclGpuKernel {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
for (size_t i = 0; i < input_num; ++i) {
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, i);
auto shape = AnfAlgo::GetInputRealDeviceShapeIfExist(kernel_node, i);
size_t size = sizeof(T);
for (size_t j = 0; j < shape.size(); j++) {
size *= IntToSize(shape[j]);
@ -99,7 +93,7 @@ class NcclCollectiveGpuKernel : public NcclGpuKernel {
input_size_ += aligned_size;
}
for (size_t i = 0; i < output_num; ++i) {
auto shape = AnfAlgo::GetOutputInferShape(kernel_node, i);
auto shape = AnfAlgo::GetOutputRealDeviceShapeIfExist(kernel_node, i);
size_t size = sizeof(T);
for (size_t j = 0; j < shape.size(); j++) {
size *= IntToSize(shape[j]);
@ -122,6 +116,19 @@ class NcclCollectiveGpuKernel : public NcclGpuKernel {
return true;
}
void ResetResource() noexcept override {
nccl_kernel_type_ = NCCL_INVALID_TYPE;
nccl_reduce_type_ = ncclSum;
input_size_ = 0;
output_size_ = 0;
root_ = 0;
collective_handle_ = nullptr;
comm_stream_ = nullptr;
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
}
protected:
void InitSizeLists() override { return; }

View File

@ -43,8 +43,8 @@ const AnfNodePtr ConvertConstInputToAttr::Process(const FuncGraphPtr &, const An
todos.push_back(node);
}
std::set<string> DynamicShapeConstInputToAttr = {kCastOpName, kExpandDimsOpName, kReshapeOpName,
kEmbeddingLookupOpName, kTransposeOpName};
std::set<string> DynamicShapeConstInputToAttr = {
kCastOpName, kExpandDimsOpName, kReshapeOpName, kEmbeddingLookupOpName, kTransposeOpName, kReduceSumOpName};
for (auto &t : todos) {
CNodePtr cnode = t->cast<CNodePtr>();
ConstInputToAttrInfoRegister reg;

View File

@ -253,6 +253,8 @@ AbstractBasePtr InferImplSub(const AnalysisEnginePtr &, const PrimitivePtr &prim
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplEqual(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplReduceSum(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplCast(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplMinimum(const AnalysisEnginePtr &, const PrimitivePtr &primitive,

View File

@ -1,5 +1,5 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
* Copyright 2019-2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -121,6 +121,94 @@ AbstractBasePtr InferImplEqual(const AnalysisEnginePtr &, const PrimitivePtr &pr
return ret;
}
AbstractBasePtr InferImplReduceSum(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
const std::string op_name = primitive->name();
CheckArgsSize(op_name, args_spec_list, 1);
auto input_x = CheckArg<AbstractTensor>(op_name, args_spec_list, 0);
MS_EXCEPTION_IF_NULL(input_x);
MS_EXCEPTION_IF_NULL(input_x->element());
ValuePtr keep_dims = primitive->GetAttr("keep_dims");
MS_EXCEPTION_IF_NULL(keep_dims);
if (!keep_dims->isa<BoolImm>()) {
MS_LOG(EXCEPTION) << "Keep_dims should be Bool.";
}
bool keep_dims_value = GetValue<bool>(keep_dims);
ValuePtr axis = primitive->GetAttr("axis");
MS_EXCEPTION_IF_NULL(axis);
auto check_axis = [](int64_t &axis, const size_t dim) -> void {
int64_t dim_ = static_cast<int64_t>(dim);
if (axis < -dim_ || axis >= dim_) {
MS_LOG(EXCEPTION) << "axis should be in [" << -dim_ << ", " << dim_ << "). But got axis = " << axis;
}
if (axis >= -dim_ && axis < 0) {
axis += dim_;
}
return;
};
auto cal_shape = [axis, keep_dims_value, check_axis](ShapeVector &shape, const ShapeVector &x_shape) -> void {
if (axis->isa<ValueTuple>() || axis->isa<ValueList>()) {
auto axis_ptr_list =
axis->isa<ValueTuple>() ? axis->cast<ValueTuplePtr>()->value() : axis->cast<ValueListPtr>()->value();
if (!axis_ptr_list.size()) {
if (keep_dims_value) shape.insert(shape.end(), x_shape.size(), 1);
} else {
shape.insert(shape.end(), x_shape.begin(), x_shape.end());
ValuePtrList axis_items = axis_ptr_list;
ValuePtrList::iterator it;
ValuePtrList::reverse_iterator it_re;
int64_t axis_value;
if (keep_dims_value) {
for (it = axis_items.begin(); it != axis_items.end(); ++it) {
axis_value = GetValue<int64_t>(*it);
check_axis(axis_value, x_shape.size());
shape[axis_value] = 1;
}
} else {
std::sort(axis_items.begin(), axis_items.end());
for (it_re = axis_items.rbegin(); it_re != axis_items.rend(); ++it_re) {
axis_value = GetValue<int64_t>(*it_re);
check_axis(axis_value, x_shape.size());
shape.erase(std::begin(shape) + axis_value);
}
}
}
} else if (axis->isa<Int32Imm>() || axis->isa<Int64Imm>()) {
shape.insert(shape.end(), x_shape.begin(), x_shape.end());
int64_t axis_value = GetValue<int64_t>(axis);
check_axis(axis_value, x_shape.size());
if (keep_dims_value) {
shape[axis_value] = 1;
} else {
shape.erase(std::begin(shape) + axis_value);
}
} else {
MS_LOG(EXCEPTION) << "Axis should be one of types: [int/tuple/list].";
}
return;
};
ShapeVector shape = {};
ShapeVector x_shape = input_x->shape()->shape();
cal_shape(shape, x_shape);
bool x_is_dyn = (!input_x->shape()->min_shape().empty() && !input_x->shape()->max_shape().empty());
if (x_is_dyn) {
ShapeVector shape_min = {};
ShapeVector shape_max = {};
ShapeVector x_shape_min = input_x->shape()->min_shape();
ShapeVector x_shape_max = input_x->shape()->max_shape();
cal_shape(shape_min, x_shape_min);
cal_shape(shape_max, x_shape_max);
return std::make_shared<AbstractTensor>(input_x->element(), std::make_shared<Shape>(shape, shape_min, shape_max));
}
return std::make_shared<AbstractTensor>(input_x->element(), std::make_shared<Shape>(shape));
}
AbstractBasePtr InferImplBinaryBase(const AnalysisEnginePtr &engine_ptr, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
const std::string op_name = primitive->name();

View File

@ -44,6 +44,7 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
{prim::kPrimSqrtGrad, {InferImplSqrtGrad, true}},
{prim::kPrimSub, {InferImplSub, true}},
{prim::kPrimEqual, {InferImplEqual, true}},
{prim::kPrimReduceSum, {InferImplReduceSum, true}},
{prim::kPrimMinimum, {InferImplMinimum, true}},
{prim::kPrimDivNoNan, {InferImplDivNoNan, true}},
{prim::kPrimLinSpace, {InferImplLinSpace, true}},

View File

@ -320,7 +320,16 @@ class _Reduce(PrimitiveWithInfer):
value = np_reduce_func(value, axis_v, keepdims=self.keep_dims)
value = np.array(value)
value = Tensor(value)
if 'max_shape' and 'min_shape' in input_x:
output_max_shape = _infer_shape_reduce(input_x['max_shape'], axis_v, self.keep_dims, self.name)
output_min_shape = _infer_shape_reduce(input_x['min_shape'], axis_v, self.keep_dims, self.name)
else:
output_max_shape = input_shp
output_min_shape = input_shp
return {'shape': input_shp,
'min_shape': output_min_shape,
'max_shape': output_max_shape,
'dtype': input_x['dtype'],
'value': value}