forked from mindspore-Ecosystem/mindspore
!8908 modify api example
From: @lijiaqi0612 Reviewed-by: @sanjaychan,@liangchenghui,@sanjaychan Signed-off-by: @sanjaychan
This commit is contained in:
commit
6a2b3a4ee1
|
@ -232,6 +232,8 @@ def ms_function(fn=None, obj=None, input_signature=None):
|
|||
equal to the case when `fn` is not None.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.ops import functional as F
|
||||
>>>
|
||||
>>> def tensor_add(x, y):
|
||||
>>> z = F.tensor_add(x, y)
|
||||
>>> return z
|
||||
|
|
|
@ -58,6 +58,8 @@ def set_seed(seed):
|
|||
TypeError: If seed isn't a int.
|
||||
|
||||
Examples:
|
||||
>>> from mindspore.ops import composite as C
|
||||
>>>
|
||||
>>> # 1. If global seed is not set, numpy.random and initializer will choose a random seed:
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A1
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A2
|
||||
|
|
|
@ -105,10 +105,11 @@ class Model:
|
|||
>>> return out
|
||||
>>>
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
|
||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||
>>> dataset = get_dataset()
|
||||
>>> # For details about how to build the dataset, please refer to the tutorial document on the official website.
|
||||
>>> dataset = create_custom_dataset()
|
||||
>>> model.train(2, dataset)
|
||||
"""
|
||||
|
||||
|
@ -514,9 +515,6 @@ class Model:
|
|||
When setting pynative mode or CPU, the training process will be performed with dataset not sink.
|
||||
|
||||
Note:
|
||||
If dataset_sink_mode is True, epoch of training should be equal to the count of repeat
|
||||
operation in dataset processing. Otherwise, errors could occur since the amount of data
|
||||
is not equal to the required amount of training .
|
||||
If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features
|
||||
of data will be transferred one by one. The limitation of data transmission per time is 256M.
|
||||
If sink_size > 0, each epoch the dataset can be traversed unlimited times until you get sink_size
|
||||
|
@ -541,7 +539,7 @@ class Model:
|
|||
If dataset_sink_mode is False, set sink_size as invalid. Default: -1.
|
||||
|
||||
Examples:
|
||||
>>> dataset = get_dataset()
|
||||
>>> dataset = create_custom_dataset()
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> loss_scale_manager = FixedLossScaleManager()
|
||||
|
@ -659,7 +657,7 @@ class Model:
|
|||
Dict, which returns the loss value and metrics values for the model in the test mode.
|
||||
|
||||
Examples:
|
||||
>>> dataset = get_dataset()
|
||||
>>> dataset = create_custom_dataset()
|
||||
>>> net = Net()
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
|
||||
|
|
Loading…
Reference in New Issue