forked from mindspore-Ecosystem/mindspore
commit
686225ad2a
|
@ -631,13 +631,9 @@ std::shared_ptr<TensorOperation> RandomResizedCropWithBBox::Parse() {
|
|||
|
||||
// RandomRotation Transform Operation.
|
||||
struct RandomRotation::Data {
|
||||
Data(const std::vector<float> °rees, InterpolationMode interpolation_mode, bool expand,
|
||||
const std::vector<float> ¢er, const std::vector<uint8_t> &fill_value)
|
||||
: degrees_(degrees),
|
||||
interpolation_mode_(interpolation_mode),
|
||||
expand_(expand),
|
||||
center_(center),
|
||||
fill_value_(fill_value) {}
|
||||
Data(const std::vector<float> °rees, InterpolationMode resample, bool expand, const std::vector<float> ¢er,
|
||||
const std::vector<uint8_t> &fill_value)
|
||||
: degrees_(degrees), interpolation_mode_(resample), expand_(expand), center_(center), fill_value_(fill_value) {}
|
||||
std::vector<float> degrees_;
|
||||
InterpolationMode interpolation_mode_;
|
||||
std::vector<float> center_;
|
||||
|
@ -645,9 +641,9 @@ struct RandomRotation::Data {
|
|||
std::vector<uint8_t> fill_value_;
|
||||
};
|
||||
|
||||
RandomRotation::RandomRotation(std::vector<float> degrees, InterpolationMode interpolation_mode, bool expand,
|
||||
RandomRotation::RandomRotation(std::vector<float> degrees, InterpolationMode resample, bool expand,
|
||||
std::vector<float> center, std::vector<uint8_t> fill_value)
|
||||
: data_(std::make_shared<Data>(degrees, interpolation_mode, expand, center, fill_value)) {}
|
||||
: data_(std::make_shared<Data>(degrees, resample, expand, center, fill_value)) {}
|
||||
|
||||
std::shared_ptr<TensorOperation> RandomRotation::Parse() {
|
||||
return std::make_shared<RandomRotationOperation>(data_->degrees_, data_->interpolation_mode_, data_->expand_,
|
||||
|
|
|
@ -448,6 +448,13 @@ void Tensor::Print(std::ostream &out) const {
|
|||
out << "[Data area is null]";
|
||||
}
|
||||
}
|
||||
|
||||
void Tensor::Print_data(std::ostream &out) const {
|
||||
if (data_) {
|
||||
PrintRecursive(out, 0, std::vector<dsize_t>{});
|
||||
}
|
||||
}
|
||||
|
||||
Status Tensor::AllocateBuffer(const dsize_t &length) {
|
||||
RETURN_UNEXPECTED_IF_NULL(data_allocator_);
|
||||
if (data_ == nullptr) {
|
||||
|
@ -620,6 +627,17 @@ Status Tensor::GetBufferInfo(Tensor *t, py::buffer_info *out) {
|
|||
}
|
||||
#endif
|
||||
|
||||
Status Tensor::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args;
|
||||
args["shape"] = shape_.ToString();
|
||||
args["type"] = type_.ToString();
|
||||
std::stringstream ss;
|
||||
this->Print_data(ss);
|
||||
args["data"] = ss.str();
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Status Tensor::GetItemAt(T *o, const std::vector<dsize_t> &index) const {
|
||||
if (data_ == nullptr) {
|
||||
|
|
|
@ -217,6 +217,8 @@ class Tensor {
|
|||
|
||||
bool operator!=(const Tensor &rhs) const { return !((*this) == rhs); }
|
||||
|
||||
Status to_json(nlohmann::json *out_json);
|
||||
|
||||
/// Get item located at `index`, caller needs to provide the type.
|
||||
/// \tparam T
|
||||
/// \param[in] index vector<dsize_t>
|
||||
|
@ -661,6 +663,10 @@ class Tensor {
|
|||
/// \param[out] out output stream
|
||||
void Print(std::ostream &out) const;
|
||||
|
||||
/// A function that prints info about the tensor
|
||||
/// \param[out] out output stream
|
||||
void Print_data(std::ostream &out) const;
|
||||
|
||||
/// A function that print the value as specified by its index
|
||||
/// \param[in] index vector representing the index
|
||||
/// \param[out] out
|
||||
|
|
|
@ -35,7 +35,7 @@ ConcatOp::Builder::Builder() {
|
|||
// The builder "build" method creates the final object.
|
||||
Status ConcatOp::Builder::Build(std::shared_ptr<ConcatOp> *ptr) {
|
||||
if (builder_sampler_ == nullptr) {
|
||||
builder_sampler_ = std::make_shared<DistributedSamplerRT>(0, 1, 0, false);
|
||||
builder_sampler_ = std::make_shared<DistributedSamplerRT>(1, 0, false, 0);
|
||||
}
|
||||
*ptr = std::make_shared<ConcatOp>(builder_sampler_, children_flag_and_nums_, children_start_end_index_);
|
||||
return Status::OK();
|
||||
|
|
|
@ -23,13 +23,13 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
DistributedSamplerRT::DistributedSamplerRT(int64_t num_samples, int64_t num_dev, int64_t dev_id, bool shuffle,
|
||||
DistributedSamplerRT::DistributedSamplerRT(int64_t num_shards, int64_t shard_id, bool shuffle, int64_t num_samples,
|
||||
uint32_t seed, int64_t offset, bool even_dist)
|
||||
: SamplerRT(num_samples, std::numeric_limits<int64_t>::max()),
|
||||
cnt_(0),
|
||||
seed_(seed == std::numeric_limits<uint32_t>::max() ? GetSeed() : seed),
|
||||
device_id_(dev_id),
|
||||
num_devices_(num_dev),
|
||||
device_id_(shard_id),
|
||||
num_devices_(num_shards),
|
||||
shuffle_(shuffle),
|
||||
even_dist_(even_dist),
|
||||
offset_(offset),
|
||||
|
|
|
@ -28,10 +28,10 @@ namespace dataset {
|
|||
class DistributedSamplerRT : public SamplerRT {
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \param[in] num_samples The total number of rows in the dataset
|
||||
/// \param[in] num_dev Total number of shards for the distributed sampler
|
||||
/// \param[in] dev_id Device id of the shard
|
||||
/// \param[in] num_shards Total number of shards for the distributed sampler
|
||||
/// \param[in] shard_id Device id of the shard
|
||||
/// \param[in] shuffle Option to shuffle
|
||||
/// \param[in] num_samples The total number of rows in the dataset
|
||||
/// \param seed Seed parameter to shuffle, default to max unsigned int (different seed in sampler will
|
||||
/// result in different samples being picked
|
||||
/// \param[in] offset The starting device id where the elements in the dataset are send to, which should be no more
|
||||
|
@ -40,7 +40,7 @@ class DistributedSamplerRT : public SamplerRT {
|
|||
/// This option is not exposed in the python API. Current behavior is that the remainder will always
|
||||
/// be handled by the first n shards, n being the corresponding device id. Please notice that when offset is set,
|
||||
/// even_dist will be forcibly converted to false for sending rest datasets in concatdataset scenario.
|
||||
DistributedSamplerRT(int64_t num_samples, int64_t num_dev, int64_t dev_id, bool shuffle,
|
||||
DistributedSamplerRT(int64_t num_shards, int64_t shard_id, bool shuffle, int64_t num_samples,
|
||||
uint32_t seed = std::numeric_limits<uint32_t>::max(), int64_t offset = -1,
|
||||
bool even_dist = true);
|
||||
|
||||
|
|
|
@ -20,12 +20,12 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
PKSamplerRT::PKSamplerRT(int64_t num_samples, int64_t val, bool shuffle, int64_t samples_per_tensor)
|
||||
PKSamplerRT::PKSamplerRT(int64_t num_val, bool shuffle, int64_t num_samples, int64_t samples_per_tensor)
|
||||
: SamplerRT(num_samples, samples_per_tensor),
|
||||
shuffle_(shuffle),
|
||||
seed_(GetSeed()),
|
||||
next_id_(0),
|
||||
samples_per_class_(val) {}
|
||||
samples_per_class_(num_val) {}
|
||||
|
||||
Status PKSamplerRT::InitSampler() {
|
||||
if (is_initialized) {
|
||||
|
|
|
@ -28,11 +28,11 @@ namespace mindspore {
|
|||
namespace dataset {
|
||||
class PKSamplerRT : public SamplerRT { // NOT YET FINISHED
|
||||
public:
|
||||
// @param num_samples - the number of samples to draw. value of 0 means to take the full amount
|
||||
// @param int64_t val
|
||||
// @param int64_t num_val
|
||||
// @param bool shuffle - shuffle all classIds or not, if true, classes may be 5,1,4,3,2
|
||||
// @param num_samples - the number of samples to draw. value of 0 means to take the full amount
|
||||
// @param int64_t samples_per_tensor - Num of Sampler Ids to fetch via 1 GetNextSample call
|
||||
PKSamplerRT(int64_t num_samples, int64_t val, bool shuffle,
|
||||
PKSamplerRT(int64_t num_val, bool shuffle, int64_t num_samples,
|
||||
int64_t samples_per_tensor = std::numeric_limits<int64_t>::max());
|
||||
|
||||
// default destructor
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
RandomSamplerRT::RandomSamplerRT(int64_t num_samples, bool replacement, bool reshuffle_each_epoch,
|
||||
RandomSamplerRT::RandomSamplerRT(bool replacement, int64_t num_samples, bool reshuffle_each_epoch,
|
||||
int64_t samples_per_tensor)
|
||||
: SamplerRT(num_samples, samples_per_tensor),
|
||||
seed_(GetSeed()),
|
||||
|
|
|
@ -27,11 +27,11 @@ namespace dataset {
|
|||
class RandomSamplerRT : public SamplerRT {
|
||||
public:
|
||||
// Constructor
|
||||
// @param int64_t num_samples - number samples to draw
|
||||
// @param bool replacement - put he id back / or not after a sample
|
||||
// @param int64_t num_samples - number samples to draw
|
||||
// @param reshuffle_each_epoch - T/F to reshuffle after epoch
|
||||
// @param int64_t samples_per_tensor - Num of Sampler Ids to fetch via 1 GetNextSample call
|
||||
RandomSamplerRT(int64_t num_samples, bool replacement, bool reshuffle_each_epoch,
|
||||
RandomSamplerRT(bool replacement, int64_t num_samples, bool reshuffle_each_epoch,
|
||||
int64_t samples_per_tensor = std::numeric_limits<int64_t>::max());
|
||||
|
||||
// Destructor.
|
||||
|
|
|
@ -21,7 +21,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
SequentialSamplerRT::SequentialSamplerRT(int64_t num_samples, int64_t start_index, int64_t samples_per_tensor)
|
||||
SequentialSamplerRT::SequentialSamplerRT(int64_t start_index, int64_t num_samples, int64_t samples_per_tensor)
|
||||
: SamplerRT(num_samples, samples_per_tensor), current_id_(start_index), start_index_(start_index), id_count_(0) {}
|
||||
|
||||
Status SequentialSamplerRT::GetNextSample(TensorRow *out) {
|
||||
|
|
|
@ -26,11 +26,11 @@ namespace dataset {
|
|||
class SequentialSamplerRT : public SamplerRT {
|
||||
public:
|
||||
// Constructor
|
||||
// @param start_index - The starting index value
|
||||
// @param num_samples - The number of samples to draw. A value of 0 indicates the sampler should produce the
|
||||
// full amount of ids from the dataset
|
||||
// @param start_index - The starting index value
|
||||
// @param int64_t samples_per_tensor - Num of Sampler Ids to fetch via 1 GetNextSample call
|
||||
SequentialSamplerRT(int64_t num_samples, int64_t start_index,
|
||||
SequentialSamplerRT(int64_t start_index, int64_t num_samples,
|
||||
int64_t samples_per_tensor = std::numeric_limits<int64_t>::max());
|
||||
|
||||
// Destructor.
|
||||
|
|
|
@ -25,9 +25,9 @@
|
|||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Constructor.
|
||||
SubsetRandomSamplerRT::SubsetRandomSamplerRT(int64_t num_samples, const std::vector<int64_t> &indices,
|
||||
SubsetRandomSamplerRT::SubsetRandomSamplerRT(const std::vector<int64_t> &indices, int64_t num_samples,
|
||||
int64_t samples_per_tensor)
|
||||
: SubsetSamplerRT(num_samples, indices, samples_per_tensor) {}
|
||||
: SubsetSamplerRT(indices, num_samples, samples_per_tensor) {}
|
||||
|
||||
// Initialized this Sampler.
|
||||
Status SubsetRandomSamplerRT::InitSampler() {
|
||||
|
|
|
@ -29,11 +29,11 @@ namespace dataset {
|
|||
class SubsetRandomSamplerRT : public SubsetSamplerRT {
|
||||
public:
|
||||
/// Constructor.
|
||||
/// \param num_samples The number of samples to draw. 0 for the full amount.
|
||||
/// \param indices List of indices from where we will randomly draw samples.
|
||||
/// \param num_samples The number of samples to draw. 0 for the full amount.
|
||||
/// \param samples_per_tensor The number of ids we draw on each call to GetNextSample().
|
||||
/// When samples_per_tensor=0, GetNextSample() will draw all the sample ids and return them at once.
|
||||
SubsetRandomSamplerRT(int64_t num_samples, const std::vector<int64_t> &indices,
|
||||
SubsetRandomSamplerRT(const std::vector<int64_t> &indices, int64_t num_samples,
|
||||
std::int64_t samples_per_tensor = std::numeric_limits<int64_t>::max());
|
||||
|
||||
/// Destructor.
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Constructor.
|
||||
SubsetSamplerRT::SubsetSamplerRT(int64_t num_samples, const std::vector<int64_t> &indices, int64_t samples_per_tensor)
|
||||
SubsetSamplerRT::SubsetSamplerRT(const std::vector<int64_t> &indices, int64_t num_samples, int64_t samples_per_tensor)
|
||||
: SamplerRT(num_samples, samples_per_tensor), indices_(indices), sample_id_(0) {}
|
||||
|
||||
// Initialized this Sampler.
|
||||
|
|
|
@ -28,11 +28,11 @@ namespace dataset {
|
|||
class SubsetSamplerRT : public SamplerRT {
|
||||
public:
|
||||
/// Constructor.
|
||||
/// \param num_samples The number of elements to sample. 0 for the full amount.
|
||||
/// \param indices List of indices.
|
||||
/// \param num_samples The number of elements to sample. 0 for the full amount.
|
||||
/// \param samples_per_tensor The number of ids we draw on each call to GetNextSample().
|
||||
/// When samples_per_tensor=0, GetNextSample() will draw all the sample ids and return them at once.
|
||||
SubsetSamplerRT(int64_t num_samples, const std::vector<int64_t> &indices,
|
||||
SubsetSamplerRT(const std::vector<int64_t> &indices, int64_t num_samples,
|
||||
std::int64_t samples_per_tensor = std::numeric_limits<int64_t>::max());
|
||||
|
||||
/// Destructor.
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Constructor.
|
||||
WeightedRandomSamplerRT::WeightedRandomSamplerRT(int64_t num_samples, const std::vector<double> &weights,
|
||||
WeightedRandomSamplerRT::WeightedRandomSamplerRT(const std::vector<double> &weights, int64_t num_samples,
|
||||
bool replacement, int64_t samples_per_tensor)
|
||||
: SamplerRT(num_samples, samples_per_tensor), weights_(weights), replacement_(replacement), sample_id_(0) {}
|
||||
|
||||
|
|
|
@ -29,12 +29,12 @@ namespace dataset {
|
|||
class WeightedRandomSamplerRT : public SamplerRT {
|
||||
public:
|
||||
// Constructor.
|
||||
// @param num_samples Number of samples to be drawn.
|
||||
// @param weights A lift of sample weights.
|
||||
// @param num_samples Number of samples to be drawn.
|
||||
// @param replacement Determine if samples are drawn with/without replacement.
|
||||
// @param samples_per_tensor The number of ids we draw on each call to GetNextSample().
|
||||
// When samples_per_tensor=0, GetNextSample() will draw all the sample ids and return them at once.
|
||||
WeightedRandomSamplerRT(int64_t num_samples, const std::vector<double> &weights, bool replacement,
|
||||
WeightedRandomSamplerRT(const std::vector<double> &weights, int64_t num_samples, bool replacement,
|
||||
int64_t samples_per_tensor = std::numeric_limits<int64_t>::max());
|
||||
|
||||
// Destructor.
|
||||
|
|
|
@ -77,7 +77,7 @@ Status DistributedSamplerObj::ValidateParams() {
|
|||
|
||||
Status DistributedSamplerObj::SamplerBuild(std::shared_ptr<SamplerRT> *sampler) {
|
||||
// runtime sampler object
|
||||
*sampler = std::make_shared<dataset::DistributedSamplerRT>(num_samples_, num_shards_, shard_id_, shuffle_, seed_,
|
||||
*sampler = std::make_shared<dataset::DistributedSamplerRT>(num_shards_, shard_id_, shuffle_, num_samples_, seed_,
|
||||
offset_, even_dist_);
|
||||
Status s = BuildChildren(sampler);
|
||||
sampler = s.IsOk() ? sampler : nullptr;
|
||||
|
|
|
@ -71,7 +71,7 @@ Status PKSamplerObj::to_json(nlohmann::json *const out_json) {
|
|||
|
||||
Status PKSamplerObj::SamplerBuild(std::shared_ptr<SamplerRT> *sampler) {
|
||||
// runtime sampler object
|
||||
*sampler = std::make_shared<dataset::PKSamplerRT>(num_samples_, num_val_, shuffle_);
|
||||
*sampler = std::make_shared<dataset::PKSamplerRT>(num_val_, shuffle_, num_samples_);
|
||||
Status s = BuildChildren(sampler);
|
||||
sampler = s.IsOk() ? sampler : nullptr;
|
||||
return s;
|
||||
|
|
|
@ -67,7 +67,7 @@ Status RandomSamplerObj::to_json(nlohmann::json *const out_json) {
|
|||
|
||||
Status RandomSamplerObj::SamplerBuild(std::shared_ptr<SamplerRT> *sampler) {
|
||||
// runtime sampler object
|
||||
*sampler = std::make_shared<dataset::RandomSamplerRT>(num_samples_, replacement_, reshuffle_each_epoch_);
|
||||
*sampler = std::make_shared<dataset::RandomSamplerRT>(replacement_, num_samples_, reshuffle_each_epoch_);
|
||||
Status s = BuildChildren(sampler);
|
||||
sampler = s.IsOk() ? sampler : nullptr;
|
||||
return s;
|
||||
|
|
|
@ -72,7 +72,7 @@ Status SequentialSamplerObj::to_json(nlohmann::json *const out_json) {
|
|||
|
||||
Status SequentialSamplerObj::SamplerBuild(std::shared_ptr<SamplerRT> *sampler) {
|
||||
// runtime sampler object
|
||||
*sampler = std::make_shared<dataset::SequentialSamplerRT>(num_samples_, start_index_);
|
||||
*sampler = std::make_shared<dataset::SequentialSamplerRT>(start_index_, num_samples_);
|
||||
Status s = BuildChildren(sampler);
|
||||
sampler = s.IsOk() ? sampler : nullptr;
|
||||
return s;
|
||||
|
|
|
@ -40,7 +40,7 @@ SubsetRandomSamplerObj::~SubsetRandomSamplerObj() = default;
|
|||
|
||||
Status SubsetRandomSamplerObj::SamplerBuild(std::shared_ptr<SamplerRT> *sampler) {
|
||||
// runtime sampler object
|
||||
*sampler = std::make_shared<dataset::SubsetRandomSamplerRT>(num_samples_, indices_);
|
||||
*sampler = std::make_shared<dataset::SubsetRandomSamplerRT>(indices_, num_samples_);
|
||||
Status s = BuildChildren(sampler);
|
||||
sampler = s.IsOk() ? sampler : nullptr;
|
||||
return s;
|
||||
|
|
|
@ -49,7 +49,7 @@ Status SubsetSamplerObj::ValidateParams() {
|
|||
|
||||
Status SubsetSamplerObj::SamplerBuild(std::shared_ptr<SamplerRT> *sampler) {
|
||||
// runtime sampler object
|
||||
*sampler = std::make_shared<dataset::SubsetSamplerRT>(num_samples_, indices_);
|
||||
*sampler = std::make_shared<dataset::SubsetSamplerRT>(indices_, num_samples_);
|
||||
Status s = BuildChildren(sampler);
|
||||
sampler = s.IsOk() ? sampler : nullptr;
|
||||
return s;
|
||||
|
|
|
@ -73,7 +73,7 @@ Status WeightedRandomSamplerObj::to_json(nlohmann::json *const out_json) {
|
|||
}
|
||||
|
||||
Status WeightedRandomSamplerObj::SamplerBuild(std::shared_ptr<SamplerRT> *sampler) {
|
||||
*sampler = std::make_shared<dataset::WeightedRandomSamplerRT>(num_samples_, weights_, replacement_);
|
||||
*sampler = std::make_shared<dataset::WeightedRandomSamplerRT>(weights_, num_samples_, replacement_);
|
||||
Status s = BuildChildren(sampler);
|
||||
sampler = s.IsOk() ? sampler : nullptr;
|
||||
return s;
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_AUDIO_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_AUDIO_H_
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
namespace audio {} // namespace audio
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_AUDIO_H_
|
|
@ -0,0 +1,86 @@
|
|||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_CONFIG_H
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_CONFIG_H
|
||||
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "include/api/dual_abi_helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
// Config operations for setting and getting the configuration.
|
||||
namespace config {
|
||||
|
||||
/// \brief Function to set the seed to be used in any random generator. This is used to produce deterministic results.
|
||||
/// \param[in] seed the default seed to use.
|
||||
bool set_seed(int32_t seed);
|
||||
|
||||
/// \brief Function to get the seed.
|
||||
/// \return the seed set in the configuration.
|
||||
uint32_t get_seed();
|
||||
|
||||
/// \brief Function to set the number of rows to be prefetched.
|
||||
/// \param[in] prefetch_size total number of rows to be prefetched.
|
||||
bool set_prefetch_size(int32_t prefetch_size);
|
||||
|
||||
/// \brief Function to get the prefetch size in number of rows.
|
||||
/// \return total number of rows to be prefetched.
|
||||
int32_t get_prefetch_size();
|
||||
|
||||
/// \brief Function to set the default number of parallel workers.
|
||||
/// \param[in] num_parallel_workers number of parallel workers to be used as a default for each operation.
|
||||
bool set_num_parallel_workers(int32_t num_parallel_workers);
|
||||
|
||||
/// \brief Function to get the default number of parallel workers.
|
||||
/// \return number of parallel workers to be used as a default for each operation.
|
||||
int32_t get_num_parallel_workers();
|
||||
|
||||
/// \brief Function to set the default interval (in milliseconds) for monitor sampling.
|
||||
/// \param[in] interval interval (in milliseconds) to be used for performance monitor sampling.
|
||||
bool set_monitor_sampling_interval(int32_t interval);
|
||||
|
||||
/// \brief Function to get the default interval of performance monitor sampling.
|
||||
/// \return interval (in milliseconds) for performance monitor sampling.
|
||||
int32_t get_monitor_sampling_interval();
|
||||
|
||||
/// \brief Function to set the default timeout (in seconds) for DSWaitedCallback. In case of a deadlock, the wait
|
||||
/// function will exit after the timeout period.
|
||||
/// \param[in] timeout timeout (in seconds) to be used to end the wait in DSWaitedCallback in case of a deadlock.
|
||||
bool set_callback_timeout(int32_t timeout);
|
||||
|
||||
/// \brief Function to get the default timeout for DSWaitedCallback. In case of a deadback, the wait function will exit
|
||||
/// after the timeout period.
|
||||
/// \return the duration in seconds.
|
||||
int32_t get_callback_timeout();
|
||||
|
||||
/// \brief Function to load configuration from a file.
|
||||
/// \param[in] file path of the configuration file to be loaded.
|
||||
/// \note This API exists because std::string will constrained by ABI compile option while char don't.
|
||||
bool load(const std::vector<char> &file);
|
||||
|
||||
/// \brief Function to load configuration from a file.
|
||||
/// \param[in] file path of the configuration file to be loaded.
|
||||
inline bool load(std::string file) { return load(StringToChar(file)); }
|
||||
|
||||
} // namespace config
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_CONFIG_H
|
|
@ -0,0 +1,123 @@
|
|||
/**
|
||||
* Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_CONSTANTS_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_CONSTANTS_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
#include <random>
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Various type defines for convenience
|
||||
using uchar = unsigned char;
|
||||
using dsize_t = int64_t;
|
||||
|
||||
/// \brief Target devices to perform map operation
|
||||
enum class MapTargetDevice { kCpu, kGpu, kAscend310 };
|
||||
|
||||
/// \brief Possible dataset types for holding the data and client type
|
||||
enum class DatasetType { kUnknown, kArrow, kTf };
|
||||
|
||||
/// \brief Possible flavours of Tensor implementations
|
||||
enum class TensorImpl { kNone, kFlexible, kCv, kNP };
|
||||
|
||||
/// \brief Possible values for shuffle
|
||||
enum class ShuffleMode { kFalse = 0, kFiles = 1, kGlobal = 2, kInfile = 3 };
|
||||
|
||||
/// \brief Possible values for Border types
|
||||
enum class BorderType { kConstant = 0, kEdge = 1, kReflect = 2, kSymmetric = 3 };
|
||||
|
||||
/// \brief Possible values for Image format types in a batch
|
||||
enum class ImageBatchFormat { kNHWC = 0, kNCHW = 1 };
|
||||
|
||||
/// \brief Possible values for Image format types
|
||||
enum class ImageFormat { HWC = 0, CHW = 1, HW = 2 };
|
||||
|
||||
/// \brief Possible interpolation modes
|
||||
enum class InterpolationMode { kLinear = 0, kNearestNeighbour = 1, kCubic = 2, kArea = 3, kCubicPil = 4 };
|
||||
|
||||
/// \brief Possible JiebaMode modes
|
||||
enum class JiebaMode { kMix = 0, kMp = 1, kHmm = 2 };
|
||||
|
||||
/// \brief Possible values for SPieceTokenizerOutType
|
||||
enum class SPieceTokenizerOutType { kString = 0, kInt = 1 };
|
||||
|
||||
/// \brief Possible values for SPieceTokenizerLoadType
|
||||
enum class SPieceTokenizerLoadType { kFile = 0, kModel = 1 };
|
||||
|
||||
/// \brief Possible values for SentencePieceModel
|
||||
enum class SentencePieceModel { kUnigram = 0, kBpe = 1, kChar = 2, kWord = 3 };
|
||||
|
||||
/// \brief Possible values for NormalizeForm
|
||||
enum class NormalizeForm {
|
||||
kNone = 0,
|
||||
kNfc,
|
||||
kNfkc,
|
||||
kNfd,
|
||||
kNfkd,
|
||||
};
|
||||
|
||||
/// \brief Possible values for Mask
|
||||
enum class RelationalOp {
|
||||
kEqual = 0, // ==
|
||||
kNotEqual, // !=
|
||||
kLess, // <
|
||||
kLessEqual, // <=
|
||||
kGreater, // >
|
||||
kGreaterEqual, // >=
|
||||
};
|
||||
|
||||
/// \brief Possible values for SamplingStrategy
|
||||
enum class SamplingStrategy { kRandom = 0, kEdgeWeight = 1 };
|
||||
|
||||
// convenience functions for 32bit int bitmask
|
||||
inline bool BitTest(uint32_t bits, uint32_t bitMask) { return (bits & bitMask) == bitMask; }
|
||||
|
||||
inline void BitSet(uint32_t *bits, uint32_t bitMask) { *bits |= bitMask; }
|
||||
|
||||
inline void BitClear(uint32_t *bits, uint32_t bitMask) { *bits &= (~bitMask); }
|
||||
|
||||
constexpr int64_t kDeMaxDim = std::numeric_limits<int64_t>::max();
|
||||
constexpr int32_t kDeMaxRank = std::numeric_limits<int32_t>::max();
|
||||
constexpr int64_t kDeMaxFreq = std::numeric_limits<int64_t>::max(); // 9223372036854775807 or 2^(64-1)
|
||||
constexpr int64_t kDeMaxTopk = std::numeric_limits<int64_t>::max();
|
||||
|
||||
constexpr uint32_t kCfgRowsPerBuffer = 1;
|
||||
constexpr uint32_t kCfgParallelWorkers = 8;
|
||||
constexpr uint32_t kCfgWorkerConnectorSize = 16;
|
||||
constexpr uint32_t kCfgOpConnectorSize = 16;
|
||||
constexpr int32_t kCfgDefaultRankId = -1;
|
||||
constexpr uint32_t kCfgDefaultSeed = std::mt19937::default_seed;
|
||||
constexpr uint32_t kCfgMonitorSamplingInterval = 10;
|
||||
constexpr uint32_t kCfgCallbackTimeout = 60; // timeout value for callback in seconds
|
||||
constexpr int32_t kCfgDefaultCachePort = 50052;
|
||||
constexpr char kCfgDefaultCacheHost[] = "127.0.0.1";
|
||||
constexpr int32_t kDftPrefetchSize = 20;
|
||||
constexpr int32_t kDftNumConnections = 12;
|
||||
constexpr int32_t kDftAutoNumWorkers = false;
|
||||
constexpr char kDftMetaColumnPrefix[] = "_meta-";
|
||||
|
||||
// Invalid OpenCV type should not be from 0 to 7 (opencv4/opencv2/core/hal/interface.h)
|
||||
constexpr uint8_t kCVInvalidType = 255;
|
||||
|
||||
using connection_id_type = uint64_t;
|
||||
using session_id_type = uint32_t;
|
||||
using row_id_type = int64_t;
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_CONSTANTS_H_
|
|
@ -0,0 +1,448 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_DATA_HELPER_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_DATA_HELPER_H_
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "include/api/dual_abi_helper.h"
|
||||
#include "include/api/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
/// \brief Simple class to do data manipulation, contains helper function to update json files in dataset
|
||||
class DataHelper {
|
||||
public:
|
||||
/// \brief constructor
|
||||
DataHelper() {}
|
||||
|
||||
/// \brief Destructor
|
||||
~DataHelper() = default;
|
||||
|
||||
/// \brief Create an Album dataset while taking in a path to a image folder
|
||||
/// Creates the output directory if doesn't exist
|
||||
/// \param[in] in_dir Image folder directory that takes in images
|
||||
/// \param[in] out_dir Directory containing output json files
|
||||
Status CreateAlbum(const std::string &in_dir, const std::string &out_dir) {
|
||||
return CreateAlbumIF(StringToChar(in_dir), StringToChar(out_dir));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of string values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional input for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<std::string> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), VectorStringToChar(value), StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of bool values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<bool> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of int8 values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<int8_t> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of uint8 values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<uint8_t> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of int16 values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<int16_t> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of uint16 values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<uint16_t> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of int32 values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<int32_t> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of uint32 values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<uint32_t> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of int64 values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<int64_t> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of uint64 values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<uint64_t> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of float values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<float> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a vector of double values
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value array to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateArray(const std::string &in_file, const std::string &key, const std::vector<double> &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateArrayIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a string value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const std::string &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), StringToChar(value), StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a bool value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const bool &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with an int8 value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const int8_t &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with an uint8 value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const uint8_t &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with an int16 value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const int16_t &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with an uint16 value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const uint16_t &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with an int32 value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const int32_t &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with an uint32 value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const uint32_t &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with an int64 value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const int64_t &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with an uint64 value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const uint64_t &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a float value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const float &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Update a json file field with a double value
|
||||
/// \param in_file The input file name to read in
|
||||
/// \param key Key of field to write to
|
||||
/// \param value Value to write to file
|
||||
/// \param out_file Optional parameter for output file path, will write to input file if not specified
|
||||
/// \return Status The status code returned
|
||||
Status UpdateValue(const std::string &in_file, const std::string &key, const double &value,
|
||||
const std::string &out_file = "") {
|
||||
return UpdateValueIF(StringToChar(in_file), StringToChar(key), value, StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief Template function to write tensor to file
|
||||
/// \param[in] in_file File to write to
|
||||
/// \param[in] data Array of type T values
|
||||
/// \return Status The status code returned
|
||||
template <typename T>
|
||||
Status WriteBinFile(const std::string &in_file, const std::vector<T> &data) {
|
||||
try {
|
||||
std::ofstream o(in_file, std::ios::binary | std::ios::out);
|
||||
if (!o.is_open()) {
|
||||
return Status(kMDUnexpectedError, "Error opening Bin file to write");
|
||||
}
|
||||
size_t length = data.size();
|
||||
o.write(reinterpret_cast<const char *>(&data[0]), std::streamsize(length * sizeof(T)));
|
||||
o.close();
|
||||
}
|
||||
// Catch any exception and convert to Status return code
|
||||
catch (const std::exception &err) {
|
||||
return Status(kMDUnexpectedError, "Write bin file failed ");
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Write pointer to bin, use pointer to avoid memcpy
|
||||
/// \param[in] in_file File name to write to
|
||||
/// \param[in] data Pointer to data
|
||||
/// \param[in] length Length of values to write from pointer
|
||||
/// \return Status The status code returned
|
||||
template <typename T>
|
||||
Status WriteBinFile(const std::string &in_file, T *data, size_t length) {
|
||||
try {
|
||||
std::ofstream o(in_file, std::ios::binary | std::ios::out);
|
||||
if (!o.is_open()) {
|
||||
return Status(kMDUnexpectedError, "Error opening Bin file to write");
|
||||
}
|
||||
o.write(reinterpret_cast<const char *>(data), std::streamsize(length * sizeof(T)));
|
||||
o.close();
|
||||
}
|
||||
// Catch any exception and convert to Status return code
|
||||
catch (const std::exception &err) {
|
||||
return Status(kMDUnexpectedError, "Write bin file failed ");
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
/// \brief Helper function to copy content of a tensor to buffer
|
||||
/// \note This function iterates over the tensor in bytes, since
|
||||
/// \param[in] tensor_addr The memory held by a tensor
|
||||
/// \param[in] tensor_size The amount of data in bytes in tensor_addr, e.g. tensor->SizeInBytes()
|
||||
/// \param[out] addr The address to copy tensor data to
|
||||
/// \param[in] buffer_size The buffer size of addr
|
||||
/// \return The size of the tensor (bytes copied
|
||||
size_t DumpData(const unsigned char *tensor_addr, const size_t &tensor_size, void *addr, const size_t &buffer_size);
|
||||
|
||||
/// \brief Helper function to delete key in json file
|
||||
/// note This function will return okay even if key not found
|
||||
/// \param[in] in_file Json file to remove key from
|
||||
/// \param[in] key The key to remove
|
||||
/// \return Status The status code returned
|
||||
Status RemoveKey(const std::string &in_file, const std::string &key, const std::string &out_file = "") {
|
||||
return RemoveKeyIF(StringToChar(in_file), StringToChar(key), StringToChar(out_file));
|
||||
}
|
||||
|
||||
/// \brief A print method typically used for debugging
|
||||
/// \param out - The output stream to write output to
|
||||
void Print(std::ostream &out) const;
|
||||
|
||||
/// \brief << Stream output operator overload
|
||||
/// \notes This allows you to write the debug print info using stream operators
|
||||
/// \param out Reference to the output stream being overloaded
|
||||
/// \param ds Reference to the DataSchema to display
|
||||
/// \return The output stream must be returned
|
||||
friend std::ostream &operator<<(std::ostream &out, const DataHelper &dh) {
|
||||
dh.Print(out);
|
||||
return out;
|
||||
}
|
||||
|
||||
private:
|
||||
// Helper function for dual ABI support
|
||||
Status CreateAlbumIF(const std::vector<char> &in_dir, const std::vector<char> &out_dir);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key,
|
||||
const std::vector<std::vector<char>> &value, const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key, const std::vector<bool> &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key, const std::vector<int8_t> &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key,
|
||||
const std::vector<uint8_t> &value, const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key,
|
||||
const std::vector<int16_t> &value, const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key,
|
||||
const std::vector<uint16_t> &value, const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key,
|
||||
const std::vector<int32_t> &value, const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key,
|
||||
const std::vector<uint32_t> &value, const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key,
|
||||
const std::vector<int64_t> &value, const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key,
|
||||
const std::vector<uint64_t> &value, const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key, const std::vector<float> &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateArrayIF(const std::vector<char> &in_file, const std::vector<char> &key, const std::vector<double> &value,
|
||||
const std::vector<char> &out_file);
|
||||
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const std::vector<char> &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const bool &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const int8_t &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const uint8_t &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const int16_t &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const uint16_t &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const int32_t &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const uint32_t &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const int64_t &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const uint64_t &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const float &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status UpdateValueIF(const std::vector<char> &in_file, const std::vector<char> &key, const double &value,
|
||||
const std::vector<char> &out_file);
|
||||
Status RemoveKeyIF(const std::vector<char> &in_file, const std::vector<char> &key, const std::vector<char> &out_file);
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_DATA_HELPER_H_
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,128 @@
|
|||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_EXECUTE_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_EXECUTE_H_
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include "include/api/context.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/dataset/constants.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class DeviceResource;
|
||||
// class to run tensor operations in eager mode
|
||||
class Execute {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op TensorOperation to be applied in Eager mode, it accepts op in type of shared pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(std::shared_ptr<TensorOperation> op, MapTargetDevice deviceType = MapTargetDevice::kCpu,
|
||||
uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op TensorTransform to be applied in Eager mode, it accepts op in type of shared pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(std::shared_ptr<TensorTransform> op, MapTargetDevice deviceType = MapTargetDevice::kCpu,
|
||||
uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op TensorTransform to be applied in Eager mode, it accepts op in type of reference.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(std::reference_wrapper<TensorTransform> op, MapTargetDevice deviceType = MapTargetDevice::kCpu,
|
||||
uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op TensorTransform to be applied in Eager mode, it accepts op in type of raw pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(TensorTransform *op, MapTargetDevice deviceType = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ops A vector of TensorOperations to be applied in Eager mode, it accepts op in type of shared pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(std::vector<std::shared_ptr<TensorOperation>> ops,
|
||||
MapTargetDevice deviceType = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ops A vector of TensorTransforms to be applied in Eager mode, it accepts op in type of shared pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(std::vector<std::shared_ptr<TensorTransform>> ops,
|
||||
MapTargetDevice deviceType = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ops A vector of TensorTransforms to be applied in Eager mode, it accepts op in type of raw pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(const std::vector<std::reference_wrapper<TensorTransform>> ops,
|
||||
MapTargetDevice deviceType = MapTargetDevice::kCpu, uint32_t device_id = 0);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ops A vector of TensorTransforms to be applied in Eager mode, it accepts op in type of raw pointer.
|
||||
/// \param[in] deviceType Target device env to perform operation, can be kCPU/kGPU/kAscend310 (default=kCPU).
|
||||
/// \param[in] device_id Target device id to perform operation, only valid when deviceType=kAscend310 (default=0).
|
||||
explicit Execute(const std::vector<TensorTransform *> &ops, MapTargetDevice deviceType = MapTargetDevice::kCpu,
|
||||
uint32_t device_id = 0);
|
||||
|
||||
/// \brief Destructor.
|
||||
~Execute();
|
||||
|
||||
/// \brief Callable function to execute the TensorTransform in eager mode.
|
||||
/// \param[in] input Tensor to be transformed.
|
||||
/// \param[out] output Transformed tensor.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status operator()(const mindspore::MSTensor &input, mindspore::MSTensor *output);
|
||||
|
||||
/// \brief Callable function to execute the TensorTransform in eager mode.
|
||||
/// \param[in] input_tensor_list List of Tensor to be transformed.
|
||||
/// \param[out] out Result tensor after transform.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status operator()(const std::vector<mindspore::MSTensor> &input_tensor_list, std::vector<mindspore::MSTensor> *out);
|
||||
|
||||
Status DeviceMemoryRelease();
|
||||
|
||||
std::string AippCfgGenerator();
|
||||
|
||||
private:
|
||||
Status ParseTransforms_();
|
||||
|
||||
Status validate_device_();
|
||||
|
||||
std::vector<std::shared_ptr<TensorTransform>> transforms_;
|
||||
|
||||
std::vector<std::shared_ptr<TensorOperation>> ops_;
|
||||
|
||||
MapTargetDevice device_type_;
|
||||
|
||||
std::shared_ptr<DeviceResource> device_resource_;
|
||||
|
||||
struct ExtraInfo;
|
||||
std::shared_ptr<ExtraInfo> info_;
|
||||
};
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_EXECUTE_H_
|
|
@ -0,0 +1,153 @@
|
|||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_ITERATOR_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_ITERATOR_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include "include/api/dual_abi_helper.h"
|
||||
#include "include/api/status.h"
|
||||
#include "include/api/types.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
// Forward declare
|
||||
class ExecutionTree;
|
||||
class DatasetOp;
|
||||
class Tensor;
|
||||
|
||||
class NativeRuntimeContext;
|
||||
class IteratorConsumer;
|
||||
class PullBasedIteratorConsumer;
|
||||
|
||||
class Dataset;
|
||||
|
||||
using MSTensorMap = std::unordered_map<std::string, mindspore::MSTensor>;
|
||||
using MSTensorMapChar = std::map<std::vector<char>, mindspore::MSTensor>;
|
||||
using MSTensorVec = std::vector<mindspore::MSTensor>;
|
||||
|
||||
// Abstract class for iterating over the dataset.
|
||||
class Iterator {
|
||||
public:
|
||||
/// \brief Constructor
|
||||
Iterator();
|
||||
|
||||
/// \brief Destructor
|
||||
~Iterator();
|
||||
|
||||
/// \brief Method for building and launching the pipeline.
|
||||
/// \param[in] ops - a vector of DatasetOp in the data pipeline.
|
||||
/// \param[in] num_epochs Number of epochs passed down to EpochCtrlNode, default -1, infinite epochs
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status BuildAndLaunchTree(std::shared_ptr<Dataset> ds, int32_t num_epochs);
|
||||
|
||||
/// \brief Function to get the next row from the data pipeline.
|
||||
/// \note Type of return data is a map(with column name).
|
||||
/// \param[out] row - the output tensor row.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status GetNextRow(MSTensorMap *row) {
|
||||
MSTensorMapChar row_;
|
||||
row_.clear();
|
||||
row->clear();
|
||||
Status s = GetNextRowCharIF(&row_);
|
||||
TensorMapCharToString(&row_, row);
|
||||
return s;
|
||||
}
|
||||
|
||||
// Char interface(CharIF) of GetNextRow
|
||||
// This This API exists because std::string will constrained by ABI compile option while char don't.
|
||||
Status GetNextRowCharIF(MSTensorMapChar *row);
|
||||
|
||||
/// \brief Function to get the next row from the data pipeline.
|
||||
/// \note Type of return data is a vector(without column name).
|
||||
/// \param[out] row - the output tensor row.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
virtual Status GetNextRow(MSTensorVec *row);
|
||||
|
||||
/// \brief Function to shut down the data pipeline.
|
||||
void Stop();
|
||||
|
||||
class _Iterator {
|
||||
public:
|
||||
explicit _Iterator(Iterator *lt);
|
||||
|
||||
// Destructor
|
||||
~_Iterator() {
|
||||
if (cur_row_) {
|
||||
delete cur_row_;
|
||||
}
|
||||
}
|
||||
|
||||
_Iterator &operator++(); // prefix ++ overload
|
||||
MSTensorMap &operator*() { return *cur_row_; } // dereference operator
|
||||
MSTensorMap *operator->() { return cur_row_; }
|
||||
|
||||
bool operator!=(const _Iterator &rhs) { return cur_row_ != rhs.cur_row_; }
|
||||
|
||||
private:
|
||||
int ind_; // the cur node our Iterator points to
|
||||
Iterator *lt_;
|
||||
MSTensorMap *cur_row_;
|
||||
};
|
||||
|
||||
_Iterator begin() { return _Iterator(this); }
|
||||
|
||||
_Iterator end() { return _Iterator(nullptr); }
|
||||
|
||||
private:
|
||||
std::unique_ptr<NativeRuntimeContext> runtime_context_;
|
||||
IteratorConsumer *consumer_;
|
||||
};
|
||||
|
||||
class PullIterator : public Iterator {
|
||||
public:
|
||||
/// \brief Constructor
|
||||
PullIterator();
|
||||
|
||||
/// \brief Destructor
|
||||
~PullIterator() = default;
|
||||
|
||||
/// \brief Function to get next row from the data pipeline.
|
||||
/// \note Type of return data is a vector(without column name).
|
||||
/// \param[out] row The output tensor row.
|
||||
/// \return Status error code, returns OK if no error encountered else false.
|
||||
Status GetNextRow(MSTensorVec *const row) override;
|
||||
|
||||
/// \brief Function to get specified rows from the data pipeline.
|
||||
/// \note Type of return data is a vector(without column name).
|
||||
/// \note This behavior is subject to change
|
||||
/// \param[in] num_rows The number of rows to fetch.
|
||||
/// \param[out] row The output tensor row.
|
||||
/// \return Status error code, returns OK if no error encountered else false.
|
||||
Status GetRows(int32_t num_rows, std::vector<MSTensorVec> *const row);
|
||||
|
||||
/// \brief Method for building and launching the pipeline.
|
||||
/// \note Consider making this function protected.
|
||||
/// \param[in] ds - The root node that calls the function
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status BuildAndLaunchTree(std::shared_ptr<Dataset> ds);
|
||||
|
||||
private:
|
||||
std::unique_ptr<PullBasedIteratorConsumer> pull_consumer_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_ITERATOR_H_
|
|
@ -0,0 +1,74 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef INCLUDE_NLOHMANN_JSON_FWD_HPP_
|
||||
#define INCLUDE_NLOHMANN_JSON_FWD_HPP_
|
||||
|
||||
#include <cstdint> // int64_t, uint64_t
|
||||
#include <map> // map
|
||||
#include <memory> // allocator
|
||||
#include <string> // string
|
||||
#include <vector> // vector
|
||||
|
||||
/*!
|
||||
@brief namespace for Niels Lohmann
|
||||
@see https://github.com/nlohmann
|
||||
@since version 1.0.0
|
||||
*/
|
||||
namespace nlohmann {
|
||||
/*!
|
||||
@brief default JSONSerializer template argument
|
||||
|
||||
This serializer ignores the template arguments and uses ADL
|
||||
([argument-dependent lookup](https://en.cppreference.com/w/cpp/language/adl))
|
||||
for serialization.
|
||||
*/
|
||||
template <typename T = void, typename SFINAE = void>
|
||||
struct adl_serializer;
|
||||
|
||||
template <template <typename U, typename V, typename... Args> class ObjectType = std::map,
|
||||
template <typename U, typename... Args> class ArrayType = std::vector, class StringType = std::string,
|
||||
class BooleanType = bool, class NumberIntegerType = std::int64_t, class NumberUnsignedType = std::uint64_t,
|
||||
class NumberFloatType = double, template <typename U> class AllocatorType = std::allocator,
|
||||
template <typename T, typename SFINAE = void> class JSONSerializer = adl_serializer>
|
||||
class basic_json;
|
||||
|
||||
/*!
|
||||
@brief JSON Pointer
|
||||
|
||||
A JSON pointer defines a string syntax for identifying a specific value
|
||||
within a JSON document. It can be used with functions `at` and
|
||||
`operator[]`. Furthermore, JSON pointers are the base for JSON patches.
|
||||
|
||||
@sa [RFC 6901](https://tools.ietf.org/html/rfc6901)
|
||||
|
||||
@since version 2.0.0
|
||||
*/
|
||||
template <typename BasicJsonType>
|
||||
class json_pointer;
|
||||
|
||||
/*!
|
||||
@brief default JSON class
|
||||
|
||||
This type is the default specialization of the @ref basic_json class which
|
||||
uses the standard template types.
|
||||
|
||||
@since version 1.0.0
|
||||
*/
|
||||
using json = basic_json<>;
|
||||
} // namespace nlohmann
|
||||
|
||||
#endif // INCLUDE_NLOHMANN_JSON_FWD_HPP_
|
|
@ -0,0 +1,251 @@
|
|||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_SAMPLERS_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_SAMPLERS_H_
|
||||
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
// Forward declare
|
||||
class SamplerObj;
|
||||
|
||||
// Abstract class to represent a sampler in the data pipeline.
|
||||
/// \class Sampler samplers.h
|
||||
/// \brief An abstract base class to represent a sampler in the data pipeline.
|
||||
class Sampler : std::enable_shared_from_this<Sampler> {
|
||||
friend class AlbumDataset;
|
||||
friend class CelebADataset;
|
||||
friend class Cifar10Dataset;
|
||||
friend class Cifar100Dataset;
|
||||
friend class CLUEDataset;
|
||||
friend class CocoDataset;
|
||||
friend class CSVDataset;
|
||||
friend class ImageFolderDataset;
|
||||
friend class ManifestDataset;
|
||||
friend class MindDataDataset;
|
||||
friend class MnistDataset;
|
||||
friend class RandomDataDataset;
|
||||
friend class TextFileDataset;
|
||||
friend class TFRecordDataset;
|
||||
friend class VOCDataset;
|
||||
friend std::shared_ptr<SamplerObj> SelectSampler(int64_t, bool, int32_t, int32_t);
|
||||
|
||||
public:
|
||||
/// \brief Constructor
|
||||
Sampler() {}
|
||||
|
||||
/// \brief Destructor
|
||||
~Sampler() = default;
|
||||
|
||||
/// \brief A virtual function to add a child sampler.
|
||||
/// \param[in] child The child sampler to be added as a children of this sampler.
|
||||
virtual void AddChild(std::shared_ptr<Sampler> child) { children_.push_back(child); }
|
||||
|
||||
protected:
|
||||
/// \brief Pure virtual function to convert a Sampler class into an IR Sampler object.
|
||||
/// \return shared pointer to the newly created TensorOperation.
|
||||
virtual std::shared_ptr<SamplerObj> Parse() const = 0;
|
||||
|
||||
std::vector<std::shared_ptr<Sampler>> children_;
|
||||
};
|
||||
|
||||
/// \brief A class to represent a Distributed Sampler in the data pipeline.
|
||||
/// \note A Sampler that accesses a shard of the dataset.
|
||||
class DistributedSampler final : public Sampler {
|
||||
friend std::shared_ptr<SamplerObj> SelectSampler(int64_t, bool, int32_t, int32_t);
|
||||
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \param[in] num_shards Number of shards to divide the dataset into.
|
||||
/// \param[in] shard_id Shard ID of the current shard within num_shards.
|
||||
/// \param[in] shuffle If true, the indices are shuffled (default=true).
|
||||
/// \param[in] num_samples The number of samples to draw (default=0, return all samples).
|
||||
/// \param[in] seed The seed in use when shuffle is true (default=1).
|
||||
/// \param[in] offset The starting position where access to elements in the dataset begins (default=-1).
|
||||
/// \param[in] even_dist If true, each shard would return the same number of rows (default=true).
|
||||
/// If false the total rows returned by all the shards would not have overlap.
|
||||
explicit DistributedSampler(int64_t num_shards, int64_t shard_id, bool shuffle = true, int64_t num_samples = 0,
|
||||
uint32_t seed = 1, int64_t offset = -1, bool even_dist = true);
|
||||
/// \brief Destructor.
|
||||
~DistributedSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
private:
|
||||
int64_t num_shards_;
|
||||
int64_t shard_id_;
|
||||
bool shuffle_;
|
||||
int64_t num_samples_;
|
||||
uint32_t seed_;
|
||||
int64_t offset_;
|
||||
bool even_dist_;
|
||||
};
|
||||
|
||||
/// \brief A class to represent a PK Sampler in the data pipeline.
|
||||
/// \note Samples K elements for each P class in the dataset.
|
||||
/// This will sample all classes.
|
||||
class PKSampler final : public Sampler {
|
||||
friend std::shared_ptr<SamplerObj> SelectSampler(int64_t, bool, int32_t, int32_t);
|
||||
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \param[in] num_val Number of elements to sample for each class.
|
||||
/// \param[in] shuffle If true, the class IDs are shuffled (default=false).
|
||||
/// \param[in] num_samples The number of samples to draw (default=0, return all samples).
|
||||
explicit PKSampler(int64_t num_val, bool shuffle = false, int64_t num_samples = 0);
|
||||
|
||||
/// \brief Destructor.
|
||||
~PKSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
private:
|
||||
int64_t num_val_;
|
||||
bool shuffle_;
|
||||
int64_t num_samples_;
|
||||
};
|
||||
|
||||
/// \brief A class to represent a Random Sampler in the data pipeline.
|
||||
/// \note Samples the elements randomly.
|
||||
class RandomSampler final : public Sampler {
|
||||
friend std::shared_ptr<SamplerObj> SelectSampler(int64_t, bool, int32_t, int32_t);
|
||||
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \param[in] replacement If true, put the sample ID back for the next draw (default=false).
|
||||
/// \param[in] num_samples The number of samples to draw (default=0, return all samples).
|
||||
explicit RandomSampler(bool replacement = false, int64_t num_samples = 0);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
private:
|
||||
bool replacement_;
|
||||
int64_t num_samples_;
|
||||
};
|
||||
|
||||
/// \brief A class to represent a Sequential Sampler in the data pipeline.
|
||||
/// \note Samples the dataset elements sequentially, same as not having a sampler.
|
||||
class SequentialSampler final : public Sampler {
|
||||
friend std::shared_ptr<SamplerObj> SelectSampler(int64_t, bool, int32_t, int32_t);
|
||||
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \param[in] start_index Index to start sampling at (default=0, start at first id).
|
||||
/// \param[in] num_samples The number of samples to draw (default=0, return all samples).
|
||||
explicit SequentialSampler(int64_t start_index = 0, int64_t num_samples = 0);
|
||||
|
||||
/// \brief Destructor.
|
||||
~SequentialSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
private:
|
||||
int64_t start_index_;
|
||||
int64_t num_samples_;
|
||||
};
|
||||
|
||||
/// \brief A class to represent a Subset Sampler in the data pipeline.
|
||||
/// \note Samples the elements from a sequence of indices.
|
||||
class SubsetSampler : public Sampler {
|
||||
friend std::shared_ptr<SamplerObj> SelectSampler(int64_t, bool, int32_t, int32_t);
|
||||
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \param[in] indices A vector sequence of indices.
|
||||
/// \param[in] num_samples The number of samples to draw (default=0, return all samples).
|
||||
explicit SubsetSampler(std::vector<int64_t> indices, int64_t num_samples = 0);
|
||||
|
||||
/// \brief Destructor.
|
||||
~SubsetSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
std::vector<int64_t> indices_;
|
||||
int64_t num_samples_;
|
||||
};
|
||||
|
||||
/// \brief A class to represent a Subset Random Sampler in the data pipeline.
|
||||
/// \note Samples the elements randomly from a sequence of indices.
|
||||
class SubsetRandomSampler final : public SubsetSampler {
|
||||
friend std::shared_ptr<SamplerObj> SelectSampler(int64_t, bool, int32_t, int32_t);
|
||||
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \param[in] indices A vector sequence of indices.
|
||||
/// \param[in] num_samples The number of samples to draw (default=0, return all samples).
|
||||
explicit SubsetRandomSampler(std::vector<int64_t> indices, int64_t num_samples = 0);
|
||||
|
||||
/// \brief Destructor.
|
||||
~SubsetRandomSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
};
|
||||
|
||||
/// \brief A class to represent a Weighted Random Sampler in the data pipeline.
|
||||
/// \note Samples the elements from [0, len(weights) - 1] randomly with the given
|
||||
/// weights (probabilities).
|
||||
class WeightedRandomSampler final : public Sampler {
|
||||
friend std::shared_ptr<SamplerObj> SelectSampler(int64_t, bool, int32_t, int32_t);
|
||||
|
||||
public:
|
||||
/// \brief Constructor
|
||||
/// \param[in] weights A vector sequence of weights, not necessarily summing up to 1.
|
||||
/// \param[in] num_samples The number of samples to draw (default=0, return all samples).
|
||||
/// \param[in] replacement If true, put the sample ID back for the next draw (default=true).
|
||||
explicit WeightedRandomSampler(std::vector<double> weights, int64_t num_samples = 0, bool replacement = true);
|
||||
|
||||
/// \brief Destructor.
|
||||
~WeightedRandomSampler() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert a Sampler into an IR SamplerObj.
|
||||
/// \return shared pointer to the newly created SamplerObj.
|
||||
std::shared_ptr<SamplerObj> Parse() const override;
|
||||
|
||||
private:
|
||||
std::vector<double> weights_;
|
||||
int64_t num_samples_;
|
||||
bool replacement_;
|
||||
};
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_SAMPLERS_H_
|
|
@ -0,0 +1,545 @@
|
|||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_TEXT_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_TEXT_H_
|
||||
|
||||
#include <memory>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "include/api/dual_abi_helper.h"
|
||||
#include "include/api/status.h"
|
||||
#include "include/dataset/constants.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
class Vocab;
|
||||
class SentencePieceVocab;
|
||||
class TensorOperation;
|
||||
|
||||
// Transform operations for text
|
||||
namespace text {
|
||||
|
||||
#ifndef _WIN32
|
||||
/// \brief Tokenize a scalar tensor of UTF-8 string by specific rules.
|
||||
/// \note BasicTokenizer is not supported on Windows platform yet.
|
||||
class BasicTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] lower_case If true, apply CaseFold, NormalizeUTF8 (NFD mode), RegexReplace operation on input text to
|
||||
/// fold the text to lower case and strip accents characters. If false, only apply
|
||||
/// NormalizeUTF8('normalization_form' mode) operation on input text (default=false).
|
||||
/// \param[in] keep_whitespace If true, the whitespace will be kept in out tokens (default=false).
|
||||
/// \param[in] normalize_form Used to specify a specific normalize mode. This is only effective when 'lower_case' is
|
||||
/// false. See NormalizeUTF8 for details (default=NormalizeForm::kNone).
|
||||
/// \param[in] preserve_unused_token If true, do not split special tokens like '[CLS]', '[SEP]', '[UNK]', '[PAD]',
|
||||
/// '[MASK]' (default=true).
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
explicit BasicTokenizer(bool lower_case = false, bool keep_whitespace = false,
|
||||
const NormalizeForm normalize_form = NormalizeForm::kNone, bool preserve_unused_token = true,
|
||||
bool with_offsets = false);
|
||||
|
||||
/// \brief Destructor
|
||||
~BasicTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tokenizer used for Bert text process.
|
||||
/// \note BertTokenizer is not supported on Windows platform yet.
|
||||
class BertTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab A Vocab object.
|
||||
/// \param[in] suffix_indicator Used to show that the subword is the last part of a word (default='##').
|
||||
/// \param[in] max_bytes_per_token Tokens exceeding this length will not be further split (default=100).
|
||||
/// \param[in] unknown_token When a token cannot be found, return the token directly if 'unknown_token' is an empty
|
||||
/// string, else return the string specified(default='[UNK]').
|
||||
/// \param[in] lower_case If true, apply CaseFold, NormalizeUTF8 (NFD mode), RegexReplace operation on input text to
|
||||
/// fold the text to lower case and strip accents characters. If false, only apply
|
||||
/// NormalizeUTF8('normalization_form' mode) operation on input text (default=false).
|
||||
/// \param[in] keep_whitespace If true, the whitespace will be kept in out tokens (default=false).
|
||||
/// \param[in] normalize_form Used to specify a specific normalize mode. This is only effective when 'lower_case' is
|
||||
/// false. See NormalizeUTF8 for details (default=NormalizeForm::kNone).
|
||||
/// \param[in] preserve_unused_token If true, do not split special tokens like '[CLS]', '[SEP]', '[UNK]', '[PAD]',
|
||||
/// '[MASK]' (default=true).
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
explicit BertTokenizer(const std::shared_ptr<Vocab> &vocab, const std::string &suffix_indicator = "##",
|
||||
int32_t max_bytes_per_token = 100, const std::string &unknown_token = "[UNK]",
|
||||
bool lower_case = false, bool keep_whitespace = false,
|
||||
const NormalizeForm normalize_form = NormalizeForm::kNone, bool preserve_unused_token = true,
|
||||
bool with_offsets = false)
|
||||
: BertTokenizer(vocab, StringToChar(suffix_indicator), max_bytes_per_token, StringToChar(unknown_token),
|
||||
lower_case, keep_whitespace, normalize_form, preserve_unused_token, with_offsets) {}
|
||||
|
||||
explicit BertTokenizer(const std::shared_ptr<Vocab> &vocab, const std::vector<char> &suffix_indicator,
|
||||
int32_t max_bytes_per_token, const std::vector<char> &unknown_token, bool lower_case,
|
||||
bool keep_whitespace, const NormalizeForm normalize_form, bool preserve_unused_token,
|
||||
bool with_offsets);
|
||||
|
||||
/// \brief Destructor
|
||||
~BertTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Apply case fold operation on UTF-8 string tensor.
|
||||
/// \return Shared pointer to the current TensorOperation.
|
||||
class CaseFold final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
CaseFold();
|
||||
|
||||
/// \brief Destructor
|
||||
~CaseFold() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
#endif
|
||||
|
||||
/// \brief Tokenize Chinese string into words based on dictionary.
|
||||
/// \note The integrity of the HMMSEgment algorithm and MPSegment algorithm files must be confirmed.
|
||||
class JiebaTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] hmm_path Dictionary file is used by HMMSegment algorithm. The dictionary can be obtained on the
|
||||
/// official website of cppjieba.
|
||||
/// \param[in] mp_path Dictionary file is used by MPSegment algorithm. The dictionary can be obtained on the
|
||||
/// official website of cppjieba.
|
||||
/// \param[in] mode Valid values can be any of [JiebaMode.MP, JiebaMode.HMM, JiebaMode.MIX](default=JiebaMode.MIX).
|
||||
/// - JiebaMode.kMP, tokenize with MPSegment algorithm.
|
||||
/// - JiebaMode.kHMM, tokenize with Hiddel Markov Model Segment algorithm.
|
||||
/// - JiebaMode.kMIX, tokenize with a mix of MPSegment and HMMSegment algorithm.
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
explicit JiebaTokenizer(const std::string &hmm_path, const std::string &mp_path,
|
||||
const JiebaMode &mode = JiebaMode::kMix, bool with_offsets = false)
|
||||
: JiebaTokenizer(StringToChar(hmm_path), StringToChar(mp_path), mode, with_offsets) {}
|
||||
|
||||
explicit JiebaTokenizer(const std::vector<char> &hmm_path, const std::vector<char> &mp_path, const JiebaMode &mode,
|
||||
bool with_offsets);
|
||||
|
||||
/// \brief Destructor
|
||||
~JiebaTokenizer() = default;
|
||||
|
||||
/// \brief Add user defined word to JiebaTokenizer's dictionary.
|
||||
/// \param[in] word The word to be added to the JiebaTokenizer instance.
|
||||
/// The added word will not be written into the built-in dictionary on disk.
|
||||
/// \param[in] freq The frequency of the word to be added. The higher the frequency,
|
||||
/// the better chance the word will be tokenized (default=None, use default frequency).
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status AddWord(const std::string &word, int64_t freq = 0) { return AddWordChar(StringToChar(word), freq); }
|
||||
|
||||
/// \brief Add user defined dictionary of word-freq pairs to JiebaTokenizer's dictionary.
|
||||
/// \param[in] user_dict Vector of word-freq pairs to be added to JiebaTokenizer's dictionary.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status AddDict(const std::vector<std::pair<std::string, int64_t>> &user_dict) {
|
||||
return AddDictChar(PairStringInt64ToPairCharInt64(user_dict));
|
||||
}
|
||||
|
||||
/// \brief Add user defined dictionary of word-freq pairs to JiebaTokenizer's dictionary from a file.
|
||||
/// Only valid word-freq pairs in user provided file will be added into the dictionary.
|
||||
/// Rows containing invalid input will be ignored, no error nor warning Status is returned.
|
||||
/// \param[in] file_path Path to the dictionary which includes user defined word-freq pairs.
|
||||
/// \return Status error code, returns OK if no error encountered.
|
||||
Status AddDict(const std::string &file_path) { return AddDictChar(StringToChar(file_path)); }
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
/// \brief Parser user defined word by file.
|
||||
/// \param[in] file_path Path to the user defined file.
|
||||
/// \param[in] user_dict Vector of word-freq pairs extracted from the user provided file.
|
||||
Status ParserFile(const std::string &file_path, std::vector<std::pair<std::string, int64_t>> *const user_dict);
|
||||
|
||||
/// \brief Used to translate all API string to vector of char and back
|
||||
Status AddWordChar(const std::vector<char> &word, int64_t freq = 0);
|
||||
|
||||
/// \brief Used to translate all API string to vector of char and back
|
||||
Status AddDictChar(const std::vector<std::pair<std::vector<char>, int64_t>> &user_dict);
|
||||
|
||||
/// \brief Used to translate all API string to vector of char and back
|
||||
Status AddDictChar(const std::vector<char> &file_path);
|
||||
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Look up a word into an id according to the input vocabulary table.
|
||||
class Lookup final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab a Vocab object.
|
||||
/// \param[in] unknown_token word to use for lookup if the word being looked up is out of Vocabulary (oov).
|
||||
/// If unknown_token is oov, runtime error will be thrown. If unknown_token is {}, which means that not to
|
||||
/// specify unknown_token when word being out of Vocabulary (default={}).
|
||||
/// \param[in] data_type mindspore::DataType of the tensor after lookup; must be numeric, including bool.
|
||||
/// (default=mindspore::DataType::kNumberTypeInt32).
|
||||
explicit Lookup(const std::shared_ptr<Vocab> &vocab, const std::optional<std::string> &unknown_token = {},
|
||||
mindspore::DataType data_type = mindspore::DataType::kNumberTypeInt32)
|
||||
: Lookup(vocab, OptionalStringToChar(unknown_token), data_type) {}
|
||||
|
||||
explicit Lookup(const std::shared_ptr<Vocab> &vocab, const std::optional<std::vector<char>> &unknown_token,
|
||||
mindspore::DataType data_type = mindspore::DataType::kNumberTypeInt32);
|
||||
|
||||
/// \brief Destructor
|
||||
~Lookup() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief TensorOp to generate n-gram from a 1-D string Tensor.
|
||||
class Ngram final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] ngrams ngrams is a vector of positive integers. For example, if ngrams={4, 3}, then the result
|
||||
/// would be a 4-gram followed by a 3-gram in the same tensor. If the number of words is not enough to make up
|
||||
/// for a n-gram, an empty string will be returned.
|
||||
/// \param[in] left_pad {"pad_token", pad_width}. Padding performed on left side of the sequence. pad_width will
|
||||
/// be capped at n-1. left_pad=("_",2) would pad left side of the sequence with "__" (default={"", 0}}).
|
||||
/// \param[in] right_pad {"pad_token", pad_width}. Padding performed on right side of the sequence.pad_width will
|
||||
/// be capped at n-1. right_pad=("-":2) would pad right side of the sequence with "--" (default={"", 0}}).
|
||||
/// \param[in] separator Symbol used to join strings together (default=" ").
|
||||
explicit Ngram(const std::vector<int32_t> &ngrams, const std::pair<std::string, int32_t> &left_pad = {"", 0},
|
||||
const std::pair<std::string, int32_t> &right_pad = {"", 0}, const std::string &separator = " ")
|
||||
: Ngram(ngrams, PairStringToChar(left_pad), PairStringToChar(right_pad), StringToChar(separator)) {}
|
||||
|
||||
explicit Ngram(const std::vector<int32_t> &ngrams, const std::pair<std::vector<char>, int32_t> &left_pad,
|
||||
const std::pair<std::vector<char>, int32_t> &right_pad, const std::vector<char> &separator);
|
||||
|
||||
/// \brief Destructor
|
||||
~Ngram() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
#ifndef _WIN32
|
||||
/// \brief Apply normalize operation on UTF-8 string tensor.
|
||||
class NormalizeUTF8 final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] normalize_form Valid values can be any of [NormalizeForm::kNone,NormalizeForm::kNfc,
|
||||
/// NormalizeForm::kNfkc,
|
||||
/// NormalizeForm::kNfd, NormalizeForm::kNfkd](default=NormalizeForm::kNfkc).
|
||||
/// See http://unicode.org/reports/tr15/ for details.
|
||||
/// - NormalizeForm.NONE, do nothing for input string tensor.
|
||||
/// - NormalizeForm.NFC, normalize with Normalization Form C.
|
||||
/// - NormalizeForm.NFKC, normalize with Normalization Form KC.
|
||||
/// - NormalizeForm.NFD, normalize with Normalization Form D.
|
||||
/// - NormalizeForm.NFKD, normalize with Normalization Form KD.
|
||||
explicit NormalizeUTF8(NormalizeForm normalize_form = NormalizeForm::kNfkc);
|
||||
|
||||
/// \brief Destructor
|
||||
~NormalizeUTF8() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Replace UTF-8 string tensor with 'replace' according to regular expression 'pattern'.
|
||||
class RegexReplace final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] pattern The regex expression patterns.
|
||||
/// \param[in] replace The string to replace matched element.
|
||||
/// \param[in] replace_all Confirm whether to replace all. If false, only replace first matched element;
|
||||
/// if true, replace all matched elements (default=true).
|
||||
explicit RegexReplace(std::string pattern, std::string replace, bool replace_all = true)
|
||||
: RegexReplace(StringToChar(pattern), StringToChar(replace), replace_all) {}
|
||||
|
||||
explicit RegexReplace(const std::vector<char> &pattern, const std::vector<char> &replace, bool replace_all);
|
||||
|
||||
/// \brief Destructor
|
||||
~RegexReplace() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tokenize a scalar tensor of UTF-8 string by regex expression pattern.
|
||||
class RegexTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] delim_pattern The pattern of regex delimiters.
|
||||
/// \param[in] keep_delim_pattern The string matched by 'delim_pattern' can be kept as a token if it can be
|
||||
/// matched by 'keep_delim_pattern'. The default value is an empty string ("").
|
||||
/// which means that delimiters will not be kept as an output token (default="").
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
explicit RegexTokenizer(std::string delim_pattern, std::string keep_delim_pattern = "", bool with_offsets = false)
|
||||
: RegexTokenizer(StringToChar(delim_pattern), StringToChar(keep_delim_pattern), with_offsets) {}
|
||||
|
||||
explicit RegexTokenizer(const std::vector<char> &delim_pattern, const std::vector<char> &keep_delim_pattern,
|
||||
bool with_offsets);
|
||||
|
||||
/// \brief Destructor
|
||||
~RegexTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
#endif
|
||||
|
||||
/// \brief Tokenize scalar token or 1-D tokens to tokens by sentencepiece.
|
||||
class SentencePieceTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab a SentencePieceVocab object.
|
||||
/// \param[in] out_type The type of output.
|
||||
SentencePieceTokenizer(const std::shared_ptr<SentencePieceVocab> &vocab,
|
||||
mindspore::dataset::SPieceTokenizerOutType out_type);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab_path vocab model file path.
|
||||
/// \param[in] out_type The type of output.
|
||||
SentencePieceTokenizer(const std::string &vocab_path, mindspore::dataset::SPieceTokenizerOutType out_type)
|
||||
: SentencePieceTokenizer(StringToChar(vocab_path), out_type) {}
|
||||
|
||||
SentencePieceTokenizer(const std::vector<char> &vocab_path, mindspore::dataset::SPieceTokenizerOutType out_type);
|
||||
|
||||
/// \brief Destructor
|
||||
~SentencePieceTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief TensorOp to construct a tensor from data (only 1-D for now), where each element in the dimension
|
||||
/// axis is a slice of data starting at the corresponding position, with a specified width.
|
||||
class SlidingWindow final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] width The width of the window. It must be an integer and greater than zero.
|
||||
/// \param[in] axis The axis along which the sliding window is computed (default=0), axis support 0 or -1 only
|
||||
/// for now.
|
||||
explicit SlidingWindow(const int32_t width, const int32_t axis = 0);
|
||||
|
||||
/// \brief Destructor
|
||||
~SlidingWindow() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tensor operation to convert every element of a string tensor to a number.
|
||||
/// Strings are cast according to the rules specified in the following links:
|
||||
/// https://en.cppreference.com/w/cpp/string/basic_string/stof,
|
||||
/// https://en.cppreference.com/w/cpp/string/basic_string/stoul,
|
||||
/// except that any strings which represent negative numbers cannot be cast to an unsigned integer type.
|
||||
class ToNumber final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] data_type mindspore::DataType of the tensor to be cast to. Must be a numeric type, excluding bool.
|
||||
explicit ToNumber(mindspore::DataType data_type);
|
||||
|
||||
/// \brief Destructor
|
||||
~ToNumber() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Truncate a pair of rank-1 tensors such that the total length is less than max_length.
|
||||
class TruncateSequencePair final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] max_length Maximum length required.
|
||||
explicit TruncateSequencePair(int32_t max_length);
|
||||
|
||||
/// \brief Destructor
|
||||
~TruncateSequencePair() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tokenize a scalar tensor of UTF-8 string to Unicode characters.
|
||||
class UnicodeCharTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
explicit UnicodeCharTokenizer(bool with_offsets = false);
|
||||
|
||||
/// \brief Destructor
|
||||
~UnicodeCharTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tokenize scalar token or 1-D tokens to 1-D subword tokens.
|
||||
class WordpieceTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] vocab A Vocab object.
|
||||
/// \param[in] suffix_indicator Used to show that the subword is the last part of a word (default='##').
|
||||
/// \param[in] max_bytes_per_token Tokens exceeding this length will not be further split (default=100).
|
||||
/// \param[in] unknown_token When a token cannot be found, return the token directly if 'unknown_token' is an empty
|
||||
/// string, else return the string specified (default='[UNK]').
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
explicit WordpieceTokenizer(const std::shared_ptr<Vocab> &vocab, const std::string &suffix_indicator = "##",
|
||||
int32_t max_bytes_per_token = 100, const std::string &unknown_token = "[UNK]",
|
||||
bool with_offsets = false)
|
||||
: WordpieceTokenizer(vocab, StringToChar(suffix_indicator), max_bytes_per_token, StringToChar(unknown_token),
|
||||
with_offsets) {}
|
||||
|
||||
explicit WordpieceTokenizer(const std::shared_ptr<Vocab> &vocab, const std::vector<char> &suffix_indicator,
|
||||
int32_t max_bytes_per_token, const std::vector<char> &unknown_token, bool with_offsets);
|
||||
|
||||
/// \brief Destructor
|
||||
~WordpieceTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
#ifndef _WIN32
|
||||
/// \brief Tokenize a scalar tensor of UTF-8 string on Unicode script boundaries.
|
||||
class UnicodeScriptTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] keep_whitespace Whether or not emit whitespace tokens (default=false).
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
explicit UnicodeScriptTokenizer(bool keep_whitespace = false, bool with_offsets = false);
|
||||
|
||||
/// \brief Destructor
|
||||
~UnicodeScriptTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Tokenize a scalar tensor of UTF-8 string on ICU4C defined whitespaces.
|
||||
class WhitespaceTokenizer final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] with_offsets Whether or not output offsets of tokens (default=false).
|
||||
explicit WhitespaceTokenizer(bool with_offsets = false);
|
||||
|
||||
/// \brief Destructor
|
||||
~WhitespaceTokenizer() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
#endif
|
||||
} // namespace text
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_TEXT_H_
|
|
@ -0,0 +1,413 @@
|
|||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_TRANSFORMS_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_TRANSFORMS_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "include/api/dual_abi_helper.h"
|
||||
#include "include/api/status.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/dataset/constants.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
class TensorOperation;
|
||||
|
||||
// We need the following two groups of forward declaration to friend the class in class TensorTransform.
|
||||
namespace transforms {
|
||||
class Compose;
|
||||
class RandomApply;
|
||||
class RandomChoice;
|
||||
} // namespace transforms
|
||||
|
||||
namespace vision {
|
||||
class BoundingBoxAugment;
|
||||
class RandomSelectSubpolicy;
|
||||
class UniformAugment;
|
||||
} // namespace vision
|
||||
|
||||
// Abstract class to represent a tensor transform operation in the data pipeline.
|
||||
/// \class TensorTransform transforms.h
|
||||
/// \brief A base class to represent a tensor transform operation in the data pipeline.
|
||||
class TensorTransform : public std::enable_shared_from_this<TensorTransform> {
|
||||
friend class Dataset;
|
||||
friend class Execute;
|
||||
friend class transforms::Compose;
|
||||
friend class transforms::RandomApply;
|
||||
friend class transforms::RandomChoice;
|
||||
friend class vision::BoundingBoxAugment;
|
||||
friend class vision::RandomSelectSubpolicy;
|
||||
friend class vision::UniformAugment;
|
||||
|
||||
public:
|
||||
/// \brief Constructor
|
||||
TensorTransform() {}
|
||||
|
||||
/// \brief Destructor
|
||||
~TensorTransform() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Pure virtual function to convert a TensorTransform class into a IR TensorOperation object.
|
||||
/// \return shared pointer to the newly created TensorOperation.
|
||||
virtual std::shared_ptr<TensorOperation> Parse() = 0;
|
||||
|
||||
/// \brief Virtual function to convert a TensorTransform class into a IR TensorOperation object.
|
||||
/// \param[in] env A string to determine the running environment
|
||||
/// \return shared pointer to the newly created TensorOperation.
|
||||
virtual std::shared_ptr<TensorOperation> Parse(const MapTargetDevice &env) { return nullptr; }
|
||||
};
|
||||
|
||||
/// \brief Slice object used in SliceOption.
|
||||
class Slice {
|
||||
public:
|
||||
/// \brief Constructor, with start, stop and step default to 0.
|
||||
Slice() : start_(0), stop_(0), step_(0) {}
|
||||
/// \brief Constructor.
|
||||
/// \param[in] start Starting integer specifying where to start the slicing.
|
||||
/// \param[in] stop Ending integer specifying where to stop the slicing.
|
||||
/// \param[in] step An integer specifying the step of the slicing.
|
||||
Slice(dsize_t start, dsize_t stop, dsize_t step) : start_(start), stop_(stop), step_(step) {}
|
||||
/// \brief Constructor, with step=1
|
||||
/// \param[in] start Starting integer specifying where to start the slicing.
|
||||
/// \param[in] stop Ending integer specifying where to stop the slicing.
|
||||
Slice(dsize_t start, dsize_t stop) : start_(start), stop_(stop), step_(1) {}
|
||||
/// \brief Constructor, with start=0 and step=1
|
||||
/// \param[in] stop Ending integer specifying where to stop the slicing.
|
||||
explicit Slice(dsize_t stop) : start_(0), stop_(stop), step_(1) {}
|
||||
Slice(Slice const &slice) = default;
|
||||
|
||||
~Slice() = default;
|
||||
|
||||
bool valid() const { return step_ != 0; }
|
||||
dsize_t start_;
|
||||
dsize_t stop_;
|
||||
dsize_t step_;
|
||||
};
|
||||
|
||||
/// \brief SliceOption used in Slice Op.
|
||||
class SliceOption {
|
||||
public:
|
||||
/// \param[in] all Slice the whole dimension
|
||||
explicit SliceOption(bool all) : all_(all) {}
|
||||
/// \param[in] indices Slice these indices along the dimension. Negative indices are supported.
|
||||
explicit SliceOption(std::vector<dsize_t> indices) : indices_(indices) {}
|
||||
/// \param[in] slice Slice the generated indices from the slice object along the dimension.
|
||||
explicit SliceOption(Slice slice) : slice_(slice) {}
|
||||
SliceOption(SliceOption const &slice) = default;
|
||||
|
||||
~SliceOption() = default;
|
||||
|
||||
// only one of the following will be valid
|
||||
// given indices to slice the Tensor.
|
||||
std::vector<dsize_t> indices_ = {};
|
||||
// Slice object. All start, stop and step are 0 if invalid.
|
||||
Slice slice_;
|
||||
bool all_ = false;
|
||||
};
|
||||
|
||||
// Transform operations for performing data transformation.
|
||||
namespace transforms {
|
||||
|
||||
/// \brief Compose Op.
|
||||
/// \note Compose a list of transforms into a single transform.
|
||||
class Compose final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms A vector of raw pointers to TensorTransform objects to be applied.
|
||||
explicit Compose(const std::vector<TensorTransform *> &transforms);
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms A vector of shared pointers to TensorTransform objects to be applied.
|
||||
explicit Compose(const std::vector<std::shared_ptr<TensorTransform>> &transforms);
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms A vector of TensorTransform objects to be applied.
|
||||
explicit Compose(const std::vector<std::reference_wrapper<TensorTransform>> &transforms);
|
||||
|
||||
/// \brief Destructor
|
||||
~Compose() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Concatenate Op.
|
||||
/// \note Tensor operation that concatenates all columns into a single tensor.
|
||||
class Concatenate final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] axis Concatenate the tensors along given axis, only support 0 or -1 so far (default=0).
|
||||
/// \param[in] prepend MSTensor to be prepended to the already concatenated tensors (default={}).
|
||||
/// \param[in] append MSTensor to be appended to the already concatenated tensors (default={}).
|
||||
explicit Concatenate(int8_t axis = 0, MSTensor prepend = {}, MSTensor append = {});
|
||||
|
||||
/// \brief Destructor
|
||||
~Concatenate() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Duplicate Op.
|
||||
/// \note Duplicate the input tensor to a new output tensor.
|
||||
/// The input tensor is carried over to the output list.
|
||||
class Duplicate final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
Duplicate();
|
||||
|
||||
/// \brief Destructor
|
||||
~Duplicate() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief Fill Op.
|
||||
/// \note Tensor operation to fill all elements in the tensor with the specified value.
|
||||
/// The output tensor will have the same shape and type as the input tensor.
|
||||
class Fill final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] fill_value Scalar value to fill the tensor with.
|
||||
/// Can only be MSTensor of the following types from mindspore::DataType:
|
||||
/// String, Bool, Int8/16/32/64, UInt8/16/32/64, Float16/32/64.
|
||||
explicit Fill(MSTensor fill_value);
|
||||
|
||||
/// \brief Destructor
|
||||
~Fill() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Mask Op.
|
||||
/// \note Mask content of the input tensor with the given predicate.
|
||||
/// Any element of the tensor that matches the predicate will be evaluated to True, otherwise False.
|
||||
class Mask final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] op One of the relational operators EQ, NE LT, GT, LE or GE.
|
||||
/// \param[in] constant Constant to be compared to.
|
||||
/// Can only be MSTensor of str, int, float, bool.
|
||||
/// \param[in] de_type Type of the generated mask. Can only be numeric or boolean datatype.
|
||||
/// (default=mindspore::DataType::kNumberTypeBool)
|
||||
explicit Mask(RelationalOp op, MSTensor constant,
|
||||
mindspore::DataType ms_type = mindspore::DataType(mindspore::DataType::kNumberTypeBool));
|
||||
|
||||
/// \brief Destructor
|
||||
~Mask() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief OneHot Op.
|
||||
/// \note Convert the labels into OneHot format.
|
||||
class OneHot final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] num_classes number of classes.
|
||||
explicit OneHot(int32_t num_classes);
|
||||
|
||||
/// \brief Destructor
|
||||
~OneHot() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief PadEnd Op.
|
||||
/// \note Pad input tensor according to pad_shape, need to have same rank.
|
||||
class PadEnd final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] pad_shape List of integers representing the shape needed.
|
||||
/// Dimensions that set to `None` will not be padded (i.e., original dim will be used).
|
||||
/// Shorter dimensions will truncate the values.
|
||||
/// \param[in] pad_value Value used to pad (default={}).
|
||||
explicit PadEnd(const std::vector<dsize_t> &pad_shape, MSTensor pad_value = {});
|
||||
|
||||
/// \brief Destructor
|
||||
~PadEnd() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomApply Op.
|
||||
/// \note Randomly perform a series of transforms with a given probability.
|
||||
class RandomApply final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms A vector of raw pointers to TensorTransform objects to be applied.
|
||||
/// \param[in] prob The probability to apply the transformation list (default=0.5).
|
||||
explicit RandomApply(const std::vector<TensorTransform *> &transforms, double prob = 0.5);
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms A vector of shared pointers to TensorTransform objects to be applied.
|
||||
/// \param[in] prob The probability to apply the transformation list (default=0.5).
|
||||
explicit RandomApply(const std::vector<std::shared_ptr<TensorTransform>> &transforms, double prob = 0.5);
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms A vector of TensorTransform objects to be applied.
|
||||
/// \param[in] prob The probability to apply the transformation list (default=0.5).
|
||||
explicit RandomApply(const std::vector<std::reference_wrapper<TensorTransform>> &transforms, double prob = 0.5);
|
||||
|
||||
/// \brief Destructor
|
||||
~RandomApply() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomChoice Op.
|
||||
/// \note Randomly selects one transform from a list of transforms to perform operation.
|
||||
class RandomChoice final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms A vector of raw pointers to TensorTransform objects to be applied.
|
||||
explicit RandomChoice(const std::vector<TensorTransform *> &transforms);
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms A vector of shared pointers to TensorTransform objects to be applied.
|
||||
explicit RandomChoice(const std::vector<std::shared_ptr<TensorTransform>> &transforms);
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms A vector of TensorTransform objects to be applied.
|
||||
explicit RandomChoice(const std::vector<std::reference_wrapper<TensorTransform>> &transforms);
|
||||
|
||||
/// \brief Destructor
|
||||
~RandomChoice() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Slice Op.
|
||||
/// \note Slice operation to extract a tensor out using the given n slices.
|
||||
/// The functionality of Slice is similar to NumPy's indexing feature.
|
||||
/// (Currently only rank-1 tensors are supported).
|
||||
class Slice final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] slice_input Vector of SliceOption
|
||||
explicit Slice(const std::vector<SliceOption> &slice_input);
|
||||
|
||||
/// \brief Destructor
|
||||
~Slice() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief TypeCast Op.
|
||||
/// \note Tensor operation to cast to a given MindSpore data type.
|
||||
class TypeCast final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] data_type mindspore::DataType to be cast to.
|
||||
explicit TypeCast(mindspore::DataType data_type);
|
||||
|
||||
/// \brief Destructor
|
||||
~TypeCast() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Unique Op.
|
||||
/// \note Return an output tensor containing all the unique elements of the input tensor in
|
||||
/// the same order that they occur in the input tensor.
|
||||
class Unique final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
Unique();
|
||||
|
||||
/// \brief Destructor
|
||||
~Unique() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
} // namespace transforms
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_TRANSFORMS_H_
|
|
@ -0,0 +1,955 @@
|
|||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_VISION_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_VISION_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "include/api/dual_abi_helper.h"
|
||||
#include "include/api/status.h"
|
||||
#include "include/dataset/constants.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
#include "include/dataset/vision_lite.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
class TensorOperation;
|
||||
|
||||
// Transform operations for performing computer vision.
|
||||
namespace vision {
|
||||
/// \brief AutoContrast TensorTransform.
|
||||
/// \note Apply automatic contrast on input image.
|
||||
class AutoContrast final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] cutoff Percent of pixels to cut off from the histogram, the valid range of cutoff value is 0 to 100.
|
||||
/// \param[in] ignore Pixel values to ignore.
|
||||
explicit AutoContrast(float cutoff = 0.0, std::vector<uint32_t> ignore = {});
|
||||
|
||||
/// \brief Destructor.
|
||||
~AutoContrast() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief BoundingBoxAugment TensorTransform.
|
||||
/// \note Apply a given image transform on a random selection of bounding box regions of a given image.
|
||||
class BoundingBoxAugment final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transform Raw pointer to a TensorTransform operation.
|
||||
/// \param[in] ratio Ratio of bounding boxes to apply augmentation on. Range: [0, 1] (default=0.3).
|
||||
explicit BoundingBoxAugment(TensorTransform *transform, float ratio = 0.3);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transform Smart pointer to a TensorTransform operation.
|
||||
/// \param[in] ratio Ratio of bounding boxes to apply augmentation on. Range: [0, 1] (default=0.3).
|
||||
explicit BoundingBoxAugment(const std::shared_ptr<TensorTransform> &transform, float ratio = 0.3);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transform Object pointer to a TensorTransform operation.
|
||||
/// \param[in] ratio Ratio of bounding boxes to apply augmentation on. Range: [0, 1] (default=0.3).
|
||||
explicit BoundingBoxAugment(const std::reference_wrapper<TensorTransform> transform, float ratio = 0.3);
|
||||
|
||||
/// \brief Destructor.
|
||||
~BoundingBoxAugment() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Constructor to apply CutMix on a batch of images.
|
||||
/// \note Masks a random section of each image with the corresponding part of another randomly
|
||||
/// selected image in that batch.
|
||||
class CutMixBatch final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] image_batch_format The format of the batch.
|
||||
/// \param[in] alpha The hyperparameter of beta distribution (default = 1.0).
|
||||
/// \param[in] prob The probability by which CutMix is applied to each image (default = 1.0).
|
||||
explicit CutMixBatch(ImageBatchFormat image_batch_format, float alpha = 1.0, float prob = 1.0);
|
||||
|
||||
/// \brief Destructor.
|
||||
~CutMixBatch() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief CutOut TensorOp.
|
||||
/// \note Randomly cut (mask) out a given number of square patches from the input image.
|
||||
class CutOut final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] length Integer representing the side length of each square patch.
|
||||
/// \param[in] num_patches Integer representing the number of patches to be cut out of an image.
|
||||
explicit CutOut(int32_t length, int32_t num_patches = 1);
|
||||
|
||||
/// \brief Destructor.
|
||||
~CutOut() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Equalize TensorTransform.
|
||||
/// \note Apply histogram equalization on input image.
|
||||
class Equalize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
Equalize();
|
||||
|
||||
/// \brief Destructor.
|
||||
~Equalize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief HwcToChw TensorTransform.
|
||||
/// \note Transpose the input image; shape (H, W, C) to shape (C, H, W).
|
||||
class HWC2CHW final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
HWC2CHW();
|
||||
|
||||
/// \brief Destructor.
|
||||
~HWC2CHW() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief Invert TensorTransform.
|
||||
/// \note Apply invert on input image in RGB mode.
|
||||
class Invert final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
Invert();
|
||||
|
||||
/// \brief Destructor.
|
||||
~Invert() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief MixUpBatch TensorTransform.
|
||||
/// \note Apply MixUp transformation on an input batch of images and labels. The labels must be in
|
||||
/// one-hot format and Batch must be called before calling this function.
|
||||
class MixUpBatch final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] alpha hyperparameter of beta distribution (default = 1.0).
|
||||
explicit MixUpBatch(float alpha = 1);
|
||||
|
||||
/// \brief Destructor.
|
||||
~MixUpBatch() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief NormalizePad TensorTransform.
|
||||
/// \note Normalize the input image with respect to mean and standard deviation and pad an extra
|
||||
/// channel with value zero.
|
||||
class NormalizePad final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] mean A vector of mean values for each channel, w.r.t channel order.
|
||||
/// The mean values must be in range [0.0, 255.0].
|
||||
/// \param[in] std A vector of standard deviations for each channel, w.r.t. channel order.
|
||||
/// The standard deviation values must be in range (0.0, 255.0].
|
||||
/// \param[in] dtype The output datatype of Tensor.
|
||||
/// The standard deviation values must be "float32" or "float16"(default = "float32").
|
||||
explicit NormalizePad(const std::vector<float> &mean, const std::vector<float> &std,
|
||||
const std::string &dtype = "float32")
|
||||
: NormalizePad(mean, std, StringToChar(dtype)) {}
|
||||
|
||||
explicit NormalizePad(const std::vector<float> &mean, const std::vector<float> &std, const std::vector<char> &dtype);
|
||||
|
||||
/// \brief Destructor.
|
||||
~NormalizePad() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Pad TensorOp.
|
||||
/// \note Pads the image according to padding parameters.
|
||||
class Pad final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] padding A vector representing the number of pixels to pad the image
|
||||
/// If vector has one value, it pads all sides of the image with that value.
|
||||
/// If vector has two values, it pads left and top with the first and
|
||||
/// right and bottom with the second value.
|
||||
/// If vector has four values, it pads left, top, right, and bottom with
|
||||
/// those values respectively.
|
||||
/// \param[in] fill_value A vector representing the pixel intensity of the borders if the padding_mode is
|
||||
/// BorderType.kConstant. If 1 value is provided, it is used for all RGB channels. If 3 values are provided,
|
||||
/// it is used to fill R, G, B channels respectively.
|
||||
/// \param[in] padding_mode The method of padding (default=BorderType.kConstant).
|
||||
/// Can be any of
|
||||
/// [BorderType.kConstant, BorderType.kEdge, BorderType.kReflect, BorderType.kSymmetric]
|
||||
/// - BorderType.kConstant, means it fills the border with constant values
|
||||
/// - BorderType.kEdge, means it pads with the last value on the edge
|
||||
/// - BorderType.kReflect, means it reflects the values on the edge omitting the last value of edge
|
||||
/// - BorderType.kSymmetric, means it reflects the values on the edge repeating the last value of edge
|
||||
explicit Pad(std::vector<int32_t> padding, std::vector<uint8_t> fill_value = {0},
|
||||
BorderType padding_mode = BorderType::kConstant);
|
||||
|
||||
/// \brief Destructor.
|
||||
~Pad() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Blends an image with its grayscale version with random weights
|
||||
/// t and 1 - t generated from a given range. If the range is trivial
|
||||
/// then the weights are determinate and t equals the bound of the interval.
|
||||
class RandomColor final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] t_lb Lower bound on the range of random weights.
|
||||
/// \param[in] t_lb Upper bound on the range of random weights.
|
||||
explicit RandomColor(float t_lb, float t_ub);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomColor() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomColorAdjust TensorTransform.
|
||||
/// \brief Randomly adjust the brightness, contrast, saturation, and hue of the input image.
|
||||
class RandomColorAdjust final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] brightness Brightness adjustment factor. Must be a vector of one or two values
|
||||
/// if it's a vector of two values it needs to be in the form of [min, max] (Default={1, 1}).
|
||||
/// \param[in] contrast Contrast adjustment factor. Must be a vector of one or two values
|
||||
/// if it's a vector of two values it needs to be in the form of [min, max] (Default={1, 1}).
|
||||
/// \param[in] saturation Saturation adjustment factor. Must be a vector of one or two values
|
||||
/// if it's a vector of two values it needs to be in the form of [min, max] (Default={1, 1}).
|
||||
/// \param[in] hue Brightness adjustment factor. Must be a vector of one or two values
|
||||
/// if it's a vector of two values it must be in the form of [min, max] where -0.5 <= min <= max <= 0.5
|
||||
/// (Default={0, 0}).
|
||||
explicit RandomColorAdjust(std::vector<float> brightness = {1.0, 1.0}, std::vector<float> contrast = {1.0, 1.0},
|
||||
std::vector<float> saturation = {1.0, 1.0}, std::vector<float> hue = {0.0, 0.0});
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomColorAdjust() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomCrop TensorTransform.
|
||||
/// \note Crop the input image at a random location.
|
||||
class RandomCrop final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// \param[in] padding A vector representing the number of pixels to pad the image
|
||||
/// If vector has one value, it pads all sides of the image with that value.
|
||||
/// If vector has two values, it pads left and top with the first and
|
||||
/// right and bottom with the second value.
|
||||
/// If vector has four values, it pads left, top, right, and bottom with
|
||||
/// those values respectively.
|
||||
/// \param[in] pad_if_needed A boolean whether to pad the image if either side is smaller than
|
||||
/// the given output size.
|
||||
/// \param[in] fill_value A vector representing the pixel intensity of the borders if the padding_mode is
|
||||
/// BorderType.kConstant. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
explicit RandomCrop(std::vector<int32_t> size, std::vector<int32_t> padding = {0, 0, 0, 0},
|
||||
bool pad_if_needed = false, std::vector<uint8_t> fill_value = {0, 0, 0},
|
||||
BorderType padding_mode = BorderType::kConstant);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomCrop() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomCropDecodeResize TensorTransform.
|
||||
/// \note Equivalent to RandomResizedCrop, but crops before decodes.
|
||||
class RandomCropDecodeResize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// \param[in] scale Range [min, max) of respective size of the
|
||||
/// original size to be cropped (default=(0.08, 1.0)).
|
||||
/// \param[in] ratio Range [min, max) of aspect ratio to be
|
||||
/// cropped (default=(3. / 4., 4. / 3.)).
|
||||
/// \param[in] interpolation An enum for the mode of interpolation.
|
||||
/// \param[in] The maximum number of attempts to propose a valid crop_area (default=10).
|
||||
/// If exceeded, fall back to use center_crop instead.
|
||||
explicit RandomCropDecodeResize(std::vector<int32_t> size, std::vector<float> scale = {0.08, 1.0},
|
||||
std::vector<float> ratio = {3. / 4, 4. / 3},
|
||||
InterpolationMode interpolation = InterpolationMode::kLinear,
|
||||
int32_t max_attempts = 10);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomCropDecodeResize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomCropWithBBox TensorTransform.
|
||||
/// \note Crop the input image at a random location and adjust bounding boxes accordingly.
|
||||
/// If cropped area is out of bbox, the return bbox will be empty.
|
||||
class RandomCropWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// \param[in] padding A vector representing the number of pixels to pad the image
|
||||
/// If vector has one value, it pads all sides of the image with that value.
|
||||
/// If vector has two values, it pads left and top with the first and
|
||||
/// right and bottom with the second value.
|
||||
/// If vector has four values, it pads left, top, right, and bottom with
|
||||
/// those values respectively.
|
||||
/// \param[in] pad_if_needed A boolean whether to pad the image if either side is smaller than
|
||||
/// the given output size.
|
||||
/// \param[in] fill_value A vector representing the pixel intensity of the borders if the padding_mode is
|
||||
/// BorderType.kConstant. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
/// \param[in] padding_mode The method of padding (default=BorderType::kConstant).It can be any of
|
||||
/// [BorderType::kConstant, BorderType::kEdge, BorderType::kReflect, BorderType::kSymmetric].
|
||||
explicit RandomCropWithBBox(std::vector<int32_t> size, std::vector<int32_t> padding = {0, 0, 0, 0},
|
||||
bool pad_if_needed = false, std::vector<uint8_t> fill_value = {0, 0, 0},
|
||||
BorderType padding_mode = BorderType::kConstant);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomCropWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomHorizontalFlip TensorTransform.
|
||||
/// \note Tensor operation to perform random horizontal flip.
|
||||
class RandomHorizontalFlip final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] prob A float representing the probability of flip.
|
||||
explicit RandomHorizontalFlip(float prob = 0.5);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomHorizontalFlip() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomHorizontalFlipWithBBox TensorTransform.
|
||||
/// \note Flip the input image horizontally, randomly with a given probability and adjust bounding boxes accordingly.
|
||||
class RandomHorizontalFlipWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] prob A float representing the probability of flip.
|
||||
explicit RandomHorizontalFlipWithBBox(float prob = 0.5);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomHorizontalFlipWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomPosterize TensorTransform.
|
||||
/// \note Tensor operation to perform random posterize.
|
||||
class RandomPosterize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] bit_range - uint8_t vector representing the minimum and maximum bit in range (Default={4, 8}).
|
||||
explicit RandomPosterize(const std::vector<uint8_t> &bit_range = {4, 8});
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomPosterize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomResize TensorTransform.
|
||||
/// \note Resize the input image using a randomly selected interpolation mode.
|
||||
// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
class RandomResize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, the smaller edge of the image will be resized to this value with.
|
||||
explicit RandomResize(std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomResize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomResizeWithBBox TensorTransform.
|
||||
/// \note Resize the input image using a randomly selected interpolation mode and adjust
|
||||
/// bounding boxes accordingly.
|
||||
class RandomResizeWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, the smaller edge of the image will be resized to this value with
|
||||
// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
explicit RandomResizeWithBBox(std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomResizeWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomResizedCrop TensorTransform.
|
||||
/// \note Crop the input image to a random size and aspect ratio.
|
||||
class RandomResizedCrop final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// \param[in] scale Range [min, max) of respective size of the original
|
||||
/// size to be cropped (default=(0.08, 1.0)).
|
||||
/// \param[in] ratio Range [min, max) of aspect ratio to be cropped
|
||||
/// (default=(3. / 4., 4. / 3.)).
|
||||
/// \param[in] interpolation Image interpolation mode (default=InterpolationMode::kLinear).
|
||||
/// \param[in] max_attempts The maximum number of attempts to propose a valid.
|
||||
/// crop_area (default=10). If exceeded, fall back to use center_crop instead.
|
||||
explicit RandomResizedCrop(std::vector<int32_t> size, std::vector<float> scale = {0.08, 1.0},
|
||||
std::vector<float> ratio = {3. / 4., 4. / 3.},
|
||||
InterpolationMode interpolation = InterpolationMode::kLinear, int32_t max_attempts = 10);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomResizedCrop() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomResizedCropWithBBox TensorTransform.
|
||||
/// \note Crop the input image to a random size and aspect ratio.
|
||||
/// If cropped area is out of bbox, the return bbox will be empty.
|
||||
class RandomResizedCropWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
/// \param[in] scale Range [min, max) of respective size of the original
|
||||
/// size to be cropped (default=(0.08, 1.0)).
|
||||
/// \param[in] ratio Range [min, max) of aspect ratio to be cropped
|
||||
/// (default=(3. / 4., 4. / 3.)).
|
||||
/// \param[in] interpolation Image interpolation mode (default=InterpolationMode::kLinear).
|
||||
/// \param[in] max_attempts The maximum number of attempts to propose a valid
|
||||
/// crop_area (default=10). If exceeded, fall back to use center_crop instead.
|
||||
RandomResizedCropWithBBox(std::vector<int32_t> size, std::vector<float> scale = {0.08, 1.0},
|
||||
std::vector<float> ratio = {3. / 4., 4. / 3.},
|
||||
InterpolationMode interpolation = InterpolationMode::kLinear, int32_t max_attempts = 10);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomResizedCropWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomRotation TensorOp.
|
||||
/// \note Rotates the image according to parameters.
|
||||
class RandomRotation final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] degrees A float vector of size, representing the starting and ending degree.
|
||||
/// \param[in] resample An enum for the mode of interpolation.
|
||||
/// \param[in] expand A boolean representing whether the image is expanded after rotation.
|
||||
/// \param[in] center A float vector of size 2, representing the x and y center of rotation.
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transform.
|
||||
/// in the output image. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
RandomRotation(std::vector<float> degrees, InterpolationMode resample = InterpolationMode::kNearestNeighbour,
|
||||
bool expand = false, std::vector<float> center = {-1, -1},
|
||||
std::vector<uint8_t> fill_value = {0, 0, 0});
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomRotation() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomSelectSubpolicy TensorTransform.
|
||||
/// \note Choose a random sub-policy from a list to be applied on the input image. A sub-policy is a list of tuples
|
||||
/// (op, prob), where op is a TensorTransform operation and prob is the probability that this op will be applied.
|
||||
/// Once a sub-policy is selected, each op within the sub-policy with be applied in sequence according to its
|
||||
/// probability.
|
||||
class RandomSelectSubpolicy final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] policy Vector of sub-policies to choose from, in which the TensorTransform objects are raw pointers.
|
||||
explicit RandomSelectSubpolicy(const std::vector<std::vector<std::pair<TensorTransform *, double>>> &policy);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] policy Vector of sub-policies to choose from, in which the TensorTransform objects are shared pointers.
|
||||
explicit RandomSelectSubpolicy(
|
||||
const std::vector<std::vector<std::pair<std::shared_ptr<TensorTransform>, double>>> &policy);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] policy Vector of sub-policies to choose from, in which the TensorTransform objects are object pointers.
|
||||
explicit RandomSelectSubpolicy(
|
||||
const std::vector<std::vector<std::pair<std::reference_wrapper<TensorTransform>, double>>> &policy);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomSelectSubpolicy() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomSharpness TensorTransform.
|
||||
/// \note Tensor operation to perform random sharpness.
|
||||
class RandomSharpness final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] degrees A float vector of size 2, representing the starting and ending degree to uniformly.
|
||||
/// sample from, to select a degree to adjust sharpness.
|
||||
explicit RandomSharpness(std::vector<float> degrees = {0.1, 1.9});
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomSharpness() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomSolarize TensorTransform.
|
||||
/// \note Invert pixels randomly within specified range. If min=max, it is a single fixed magnitude operation
|
||||
/// to inverts all pixel above that threshold.
|
||||
class RandomSolarize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] threshold A vector with two elements specifying the pixel range to invert.
|
||||
explicit RandomSolarize(std::vector<uint8_t> threshold = {0, 255});
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomSolarize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomVerticalFlip TensorTransform.
|
||||
/// \note Tensor operation to perform random vertical flip.
|
||||
class RandomVerticalFlip final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] prob A float representing the probability of flip.
|
||||
explicit RandomVerticalFlip(float prob = 0.5);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomVerticalFlip() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomVerticalFlipWithBBox TensorTransform.
|
||||
/// \note Flip the input image vertically, randomly with a given probability and adjust bounding boxes accordingly.
|
||||
class RandomVerticalFlipWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] prob A float representing the probability of flip.
|
||||
explicit RandomVerticalFlipWithBBox(float prob = 0.5);
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomVerticalFlipWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RescaleOperation TensorTransform.
|
||||
/// \note Tensor operation to rescale the input image.
|
||||
class Rescale final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] rescale Rescale factor.
|
||||
/// \param[in] shift Shift factor.
|
||||
Rescale(float rescale, float shift);
|
||||
|
||||
/// \brief Destructor.
|
||||
~Rescale() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief ResizeWithBBox TensorTransform.
|
||||
/// \note Resize the input image to the given size and adjust bounding boxes accordingly.
|
||||
class ResizeWithBBox final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size The output size of the resized image.
|
||||
/// If size is an integer, smaller edge of the image will be resized to this value with the same image aspect
|
||||
/// ratio. If size is a sequence of length 2, it should be (height, width).
|
||||
/// \param[in] interpolation An enum for the mode of interpolation (default=InterpolationMode::kLinear).
|
||||
explicit ResizeWithBBox(std::vector<int32_t> size, InterpolationMode interpolation = InterpolationMode::kLinear);
|
||||
|
||||
/// \brief Destructor.
|
||||
~ResizeWithBBox() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RgbaToBgr TensorTransform.
|
||||
/// \note Changes the input 4 channel RGBA tensor to 3 channel BGR.
|
||||
class RGBA2BGR final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
RGBA2BGR();
|
||||
|
||||
/// \brief Destructor.
|
||||
~RGBA2BGR() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief RgbaToRgb TensorTransform.
|
||||
/// \note Changes the input 4 channel RGBA tensor to 3 channel RGB.
|
||||
class RGBA2RGB final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
RGBA2RGB();
|
||||
|
||||
/// \brief Destructor.
|
||||
~RGBA2RGB() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief SoftDvppDecodeRandomCropResizeJpeg TensorTransform.
|
||||
/// \note Tensor operation to decode, random crop and resize JPEG image using the simulation algorithm of
|
||||
/// Ascend series chip DVPP module. The usage scenario is consistent with SoftDvppDecodeResizeJpeg.
|
||||
/// The input image size should be in range [32*32, 8192*8192].
|
||||
/// The zoom-out and zoom-in multiples of the image length and width should in the range [1/32, 16].
|
||||
/// Only images with an even resolution can be output. The output of odd resolution is not supported.
|
||||
class SoftDvppDecodeRandomCropResizeJpeg final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, smaller edge of the image will be resized to this value with
|
||||
/// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
/// \param[in] scale Range [min, max) of respective size of the original
|
||||
/// size to be cropped (default=(0.08, 1.0)).
|
||||
/// \param[in] ratio Range [min, max) of aspect ratio to be cropped
|
||||
/// (default=(3. / 4., 4. / 3.)).
|
||||
/// \param[in] max_attempts The maximum number of attempts to propose a valid
|
||||
/// crop_area (default=10). If exceeded, fall back to use center_crop instead.
|
||||
SoftDvppDecodeRandomCropResizeJpeg(std::vector<int32_t> size, std::vector<float> scale = {0.08, 1.0},
|
||||
std::vector<float> ratio = {3. / 4., 4. / 3.}, int32_t max_attempts = 10);
|
||||
|
||||
/// \brief Destructor.
|
||||
~SoftDvppDecodeRandomCropResizeJpeg() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief SoftDvppDecodeResizeJpeg TensorTransform.
|
||||
/// \note Tensor operation to decode and resize JPEG image using the simulation algorithm of Ascend series
|
||||
/// chip DVPP module. It is recommended to use this algorithm in the following scenarios:
|
||||
/// When training, the DVPP of the Ascend chip is not used,
|
||||
/// and the DVPP of the Ascend chip is used during inference,
|
||||
/// and the accuracy of inference is lower than the accuracy of training;
|
||||
/// and the input image size should be in range [32*32, 8192*8192].
|
||||
/// The zoom-out and zoom-in multiples of the image length and width should in the range [1/32, 16].
|
||||
/// Only images with an even resolution can be output. The output of odd resolution is not supported.
|
||||
class SoftDvppDecodeResizeJpeg final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, smaller edge of the image will be resized to this value with
|
||||
/// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
explicit SoftDvppDecodeResizeJpeg(std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~SoftDvppDecodeResizeJpeg() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief SwapRedBlue TensorOp.
|
||||
/// \note Swaps the red and blue channels in image.
|
||||
class SwapRedBlue final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
SwapRedBlue();
|
||||
|
||||
/// \brief Destructor.
|
||||
~SwapRedBlue() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief UniformAugment TensorTransform.
|
||||
/// \note Tensor operation to perform randomly selected augmentation.
|
||||
class UniformAugment final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms Raw pointer to vector of TensorTransform operations.
|
||||
/// \param[in] num_ops An integer representing the number of OPs to be selected and applied.
|
||||
explicit UniformAugment(const std::vector<TensorTransform *> &transforms, int32_t num_ops = 2);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms Smart pointer to vector of TensorTransform operations.
|
||||
/// \param[in] num_ops An integer representing the number of OPs to be selected and applied.
|
||||
explicit UniformAugment(const std::vector<std::shared_ptr<TensorTransform>> &transforms, int32_t num_ops = 2);
|
||||
|
||||
/// \brief Constructor.
|
||||
/// \param[in] transforms Object pointer to vector of TensorTransform operations.
|
||||
/// \param[in] num_ops An integer representing the number of OPs to be selected and applied.
|
||||
explicit UniformAugment(const std::vector<std::reference_wrapper<TensorTransform>> &transforms, int32_t num_ops = 2);
|
||||
|
||||
/// \brief Destructor.
|
||||
~UniformAugment() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
} // namespace vision
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_VISION_H_
|
|
@ -0,0 +1,100 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_VISION_ASCEND_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_VISION_ASCEND_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "include/api/status.h"
|
||||
#include "include/dataset/constants.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
// Transform operations for performing computer vision.
|
||||
namespace vision {
|
||||
|
||||
/* ##################################### API class ###########################################*/
|
||||
|
||||
class DvppDecodeResizeJpeg final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] resize A vector of int value for each dimension, w.r.t H,W order.
|
||||
explicit DvppDecodeResizeJpeg(std::vector<uint32_t> resize);
|
||||
|
||||
/// \brief Destructor.
|
||||
~DvppDecodeResizeJpeg() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
std::shared_ptr<TensorOperation> Parse(const MapTargetDevice &env) override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
class DvppDecodeResizeCropJpeg final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] crop A vector of int value for each dimension after final crop, w.r.t H,W order.
|
||||
/// \param[in] resize A vector of int value for each dimension after resize, w.r.t H,W order.
|
||||
explicit DvppDecodeResizeCropJpeg(std::vector<uint32_t> crop, std::vector<uint32_t> resize);
|
||||
|
||||
/// \brief Destructor.
|
||||
~DvppDecodeResizeCropJpeg() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
std::shared_ptr<TensorOperation> Parse(const MapTargetDevice &env) override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
class DvppDecodePng final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
DvppDecodePng();
|
||||
|
||||
/// \brief Destructor.
|
||||
~DvppDecodePng() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
std::shared_ptr<TensorOperation> Parse(const MapTargetDevice &env) override;
|
||||
};
|
||||
|
||||
} // namespace vision
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_VISION_ASCEND_H_
|
|
@ -0,0 +1,292 @@
|
|||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_VISION_LITE_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_VISION_LITE_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "include/api/status.h"
|
||||
#include "include/dataset/constants.h"
|
||||
#include "include/dataset/transforms.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
// Transform operations for performing computer vision.
|
||||
namespace vision {
|
||||
|
||||
// Forward Declarations
|
||||
class RotateOperation;
|
||||
|
||||
/// \brief Affine TensorTransform.
|
||||
/// \note Apply affine transform on input image.
|
||||
class Affine final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] degrees The degrees to rotate the image by.
|
||||
/// \param[in] translation The value representing vertical and horizontal translation (default = {0.0, 0.0}).
|
||||
/// The first value represent the x axis translation while the second represents y axis translation.
|
||||
/// \param[in] scale The scaling factor for the image (default = 0.0).
|
||||
/// \param[in] shear A float vector of size 2, representing the shear degrees (default = {0.0, 0.0}).
|
||||
/// \param[in] interpolation An enum for the mode of interpolation.
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transform
|
||||
/// in the output image. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
explicit Affine(float_t degrees, const std::vector<float> &translation = {0.0, 0.0}, float scale = 0.0,
|
||||
const std::vector<float> &shear = {0.0, 0.0},
|
||||
InterpolationMode interpolation = InterpolationMode::kNearestNeighbour,
|
||||
const std::vector<uint8_t> &fill_value = {0, 0, 0});
|
||||
|
||||
/// \brief Destructor.
|
||||
~Affine() = default;
|
||||
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief CenterCrop TensorTransform.
|
||||
/// \note Crops the input image at the center to the given size.
|
||||
class CenterCrop final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the cropped image.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
explicit CenterCrop(std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~CenterCrop() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
std::shared_ptr<TensorOperation> Parse(const MapTargetDevice &env) override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RGB2GRAY TensorTransform.
|
||||
/// \note Convert RGB image or color image to grayscale image.
|
||||
class RGB2GRAY final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
RGB2GRAY() = default;
|
||||
|
||||
/// \brief Destructor.
|
||||
~RGB2GRAY() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
};
|
||||
|
||||
/// \brief Crop TensorTransform.
|
||||
/// \note Crop an image based on location and crop size.
|
||||
class Crop final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] coordinates Starting location of crop. Must be a vector of two values, in the form of {x_coor, y_coor}.
|
||||
/// \param[in] size Size of the cropped area.
|
||||
/// If size is a single value, a square crop of size (size, size) is returned.
|
||||
/// If size has 2 values, it should be (height, width).
|
||||
Crop(std::vector<int32_t> coordinates, std::vector<int32_t> size);
|
||||
|
||||
/// \brief Destructor.
|
||||
~Crop() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Decode TensorTransform.
|
||||
/// \note Decode the input image in RGB mode.
|
||||
class Decode final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] rgb A boolean of whether to decode in RGB mode or not.
|
||||
explicit Decode(bool rgb = true);
|
||||
|
||||
/// \brief Destructor.
|
||||
~Decode() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
std::shared_ptr<TensorOperation> Parse(const MapTargetDevice &env) override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Normalize TensorTransform.
|
||||
/// \note Normalize the input image with respect to mean and standard deviation.
|
||||
class Normalize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] mean A vector of mean values for each channel, w.r.t channel order.
|
||||
/// The mean values must be in range [0.0, 255.0].
|
||||
/// \param[in] std A vector of standard deviations for each channel, w.r.t. channel order.
|
||||
/// The standard deviation values must be in range (0.0, 255.0].
|
||||
Normalize(std::vector<float> mean, std::vector<float> std);
|
||||
|
||||
/// \brief Destructor.
|
||||
~Normalize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
std::shared_ptr<TensorOperation> Parse(const MapTargetDevice &env) override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief RandomAffine TensorTransform.
|
||||
/// \note Applies a Random Affine transformation on input image in RGB or Greyscale mode.
|
||||
class RandomAffine final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] degrees A float vector of size 2, representing the starting and ending degree.
|
||||
/// \param[in] translate_range A float vector of size 2 or 4, representing percentages of translation on x and y axes.
|
||||
/// If size is 2, (min_dx, max_dx, 0, 0).
|
||||
/// if size is 4, (min_dx, max_dx, min_dy, max_dy),
|
||||
/// all values are in range [-1, 1].
|
||||
/// \param[in] scale_range A float vector of size 2, representing the starting and ending scales in the range.
|
||||
/// \param[in] shear_ranges A float vector of size 2 or 4, representing the starting and ending shear degrees
|
||||
/// vertically and horizontally.
|
||||
/// If size is 2, (min_shear_x, max_shear_x, 0, 0),
|
||||
/// if size is 4, (min_shear_x, max_shear_x, min_shear_y, max_shear_y).
|
||||
/// \param[in] interpolation An enum for the mode of interpolation.
|
||||
/// \param[in] fill_value A vector representing the value to fill the area outside the transform
|
||||
/// in the output image. If 1 value is provided, it is used for all RGB channels.
|
||||
/// If 3 values are provided, it is used to fill R, G, B channels respectively.
|
||||
explicit RandomAffine(const std::vector<float_t> °rees,
|
||||
const std::vector<float_t> &translate_range = {0.0, 0.0, 0.0, 0.0},
|
||||
const std::vector<float_t> &scale_range = {1.0, 1.0},
|
||||
const std::vector<float_t> &shear_ranges = {0.0, 0.0, 0.0, 0.0},
|
||||
InterpolationMode interpolation = InterpolationMode::kNearestNeighbour,
|
||||
const std::vector<uint8_t> &fill_value = {0, 0, 0});
|
||||
|
||||
/// \brief Destructor.
|
||||
~RandomAffine() = default;
|
||||
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Resize TensorTransform.
|
||||
/// \note Resize the input image to the given size.
|
||||
class Resize final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] size A vector representing the output size of the resized image.
|
||||
/// If size is a single value, the image will be resized to this value with
|
||||
/// the same image aspect ratio. If size has 2 values, it should be (height, width).
|
||||
/// \param[in] interpolation An enum for the mode of interpolation.
|
||||
explicit Resize(std::vector<int32_t> size, InterpolationMode interpolation = InterpolationMode::kLinear);
|
||||
|
||||
/// \brief Destructor.
|
||||
~Resize() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
std::shared_ptr<TensorOperation> Parse(const MapTargetDevice &env) override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief ResizePreserveAR TensorTransform.
|
||||
/// \note Keep the original picture ratio and fill the rest.
|
||||
class ResizePreserveAR final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] height The height of image output value after resizing.
|
||||
/// \param[in] width The width of image output value after resizing.
|
||||
/// \param[in] img_orientation Angle method of image rotation.
|
||||
ResizePreserveAR(int32_t height, int32_t width, int32_t img_orientation = 0);
|
||||
|
||||
/// \brief Destructor.
|
||||
~ResizePreserveAR() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Rotate TensorTransform.
|
||||
/// \note Rotate the input image using a specified angle id.
|
||||
class Rotate final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
Rotate();
|
||||
|
||||
/// \brief Destructor.
|
||||
~Rotate() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
std::shared_ptr<RotateOperation> op_;
|
||||
};
|
||||
|
||||
} // namespace vision
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_VISION_LITE_H_
|
|
@ -28,7 +28,7 @@ namespace mindspore {
|
|||
namespace dataset {
|
||||
class FillOp : public TensorOp {
|
||||
public:
|
||||
explicit FillOp(std::shared_ptr<Tensor> value) : fill_value_(value) {}
|
||||
explicit FillOp(std::shared_ptr<Tensor> fill_value) : fill_value_(fill_value) {}
|
||||
|
||||
~FillOp() override = default;
|
||||
|
||||
|
|
|
@ -59,7 +59,7 @@ Status RandomApplyOp::Compute(const TensorRow &input, TensorRow *output) {
|
|||
}
|
||||
return Status::OK();
|
||||
}
|
||||
RandomApplyOp::RandomApplyOp(double prob, const std::vector<std::shared_ptr<TensorOp>> &ops)
|
||||
RandomApplyOp::RandomApplyOp(const std::vector<std::shared_ptr<TensorOp>> &ops, double prob)
|
||||
: prob_(prob), gen_(GetSeed()), rand_double_(0, 1) {
|
||||
compose_ = std::make_unique<ComposeOp>(ops);
|
||||
is_deterministic_ = false;
|
||||
|
|
|
@ -33,9 +33,9 @@ namespace dataset {
|
|||
class RandomApplyOp : public TensorOp {
|
||||
public:
|
||||
/// constructor
|
||||
/// \param[in] prob probability whether the list of TensorOps will be applied
|
||||
/// \param[in] ops the list of TensorOps to apply with prob likelihood
|
||||
explicit RandomApplyOp(double prob, const std::vector<std::shared_ptr<TensorOp>> &ops);
|
||||
/// \param[in] prob probability whether the list of TensorOps will be applied
|
||||
explicit RandomApplyOp(const std::vector<std::shared_ptr<TensorOp>> &ops, double prob);
|
||||
|
||||
/// default destructor
|
||||
~RandomApplyOp() = default;
|
||||
|
|
|
@ -31,7 +31,7 @@ namespace dataset {
|
|||
|
||||
class SliceOp : public TensorOp {
|
||||
public:
|
||||
explicit SliceOp(std::vector<SliceOption> slice_options) : slice_options_(slice_options) {}
|
||||
explicit SliceOp(std::vector<SliceOption> slice_input) : slice_options_(slice_input) {}
|
||||
explicit SliceOp(SliceOption slice_option) { slice_options_.push_back(slice_option); }
|
||||
// short hand notation for slicing along fist dimension
|
||||
explicit SliceOp(Slice slice) { slice_options_.push_back(SliceOption(slice)); }
|
||||
|
|
|
@ -26,7 +26,7 @@ namespace mindspore {
|
|||
namespace dataset {
|
||||
const bool DecodeOp::kDefRgbFormat = true;
|
||||
|
||||
DecodeOp::DecodeOp(bool is_rgb_format) : is_rgb_format_(is_rgb_format) {
|
||||
DecodeOp::DecodeOp(bool rgb) : is_rgb_format_(rgb) {
|
||||
if (is_rgb_format_) { // RGB colour mode
|
||||
MS_LOG(DEBUG) << "Decode colour mode is RGB.";
|
||||
} else {
|
||||
|
|
|
@ -31,7 +31,7 @@ class DecodeOp : public TensorOp {
|
|||
// Default values, also used by python_bindings.cc
|
||||
static const bool kDefRgbFormat;
|
||||
|
||||
explicit DecodeOp(bool is_rgb_format = true);
|
||||
explicit DecodeOp(bool rgb = true);
|
||||
|
||||
~DecodeOp() = default;
|
||||
|
||||
|
|
|
@ -26,13 +26,13 @@ const uint8_t PadOp::kDefFillR = 0;
|
|||
const uint8_t PadOp::kDefFillG = 0;
|
||||
const uint8_t PadOp::kDefFillB = 0;
|
||||
|
||||
PadOp::PadOp(int32_t pad_top, int32_t pad_bottom, int32_t pad_left, int32_t pad_right, BorderType border_types,
|
||||
PadOp::PadOp(int32_t pad_top, int32_t pad_bottom, int32_t pad_left, int32_t pad_right, BorderType padding_mode,
|
||||
uint8_t fill_r, uint8_t fill_g, uint8_t fill_b)
|
||||
: pad_top_(pad_top),
|
||||
pad_bottom_(pad_bottom),
|
||||
pad_left_(pad_left),
|
||||
pad_right_(pad_right),
|
||||
boarder_type_(border_types),
|
||||
boarder_type_(padding_mode),
|
||||
fill_r_(fill_r),
|
||||
fill_g_(fill_g),
|
||||
fill_b_(fill_b) {}
|
||||
|
|
|
@ -40,11 +40,11 @@ class PadOp : public TensorOp {
|
|||
// @param pad_bottom number of pixels to pad the bottom of the image with.
|
||||
// @param pad_left number of pixels to pad the left of the image with.
|
||||
// @param pad_right number of pixels to pad the right of the image with.
|
||||
// @param border_types BorderType enum, the type of boarders that we are using.
|
||||
// @param padding_mode BorderType enum, the type of boarders that we are using.
|
||||
// @param fill_r R value for the color to pad with.
|
||||
// @param fill_g G value for the color to pad with.
|
||||
// @param fill_b B value for the color to pad with.
|
||||
PadOp(int32_t pad_top, int32_t pad_bottom, int32_t pad_left, int32_t pad_right, BorderType border_types,
|
||||
PadOp(int32_t pad_top, int32_t pad_bottom, int32_t pad_left, int32_t pad_right, BorderType padding_mode,
|
||||
uint8_t fill_r = kDefFillR, uint8_t fill_g = kDefFillG, uint8_t fill_b = kDefFillB);
|
||||
|
||||
~PadOp() override = default;
|
||||
|
|
|
@ -31,7 +31,7 @@ const int32_t RandomCropAndResizeOp::kDefMaxIter = 10;
|
|||
|
||||
RandomCropAndResizeOp::RandomCropAndResizeOp(int32_t target_height, int32_t target_width, float scale_lb,
|
||||
float scale_ub, float aspect_lb, float aspect_ub,
|
||||
InterpolationMode interpolation, int32_t max_iter)
|
||||
InterpolationMode interpolation, int32_t max_attempts)
|
||||
: target_height_(target_height),
|
||||
target_width_(target_width),
|
||||
rnd_scale_(scale_lb, scale_ub),
|
||||
|
@ -39,7 +39,7 @@ RandomCropAndResizeOp::RandomCropAndResizeOp(int32_t target_height, int32_t targ
|
|||
interpolation_(interpolation),
|
||||
aspect_lb_(aspect_lb),
|
||||
aspect_ub_(aspect_ub),
|
||||
max_iter_(max_iter) {
|
||||
max_iter_(max_attempts) {
|
||||
rnd_.seed(GetSeed());
|
||||
is_deterministic_ = false;
|
||||
}
|
||||
|
|
|
@ -40,7 +40,7 @@ class RandomCropAndResizeOp : public TensorOp {
|
|||
|
||||
RandomCropAndResizeOp(int32_t target_height, int32_t target_width, float scale_lb = kDefScaleLb,
|
||||
float scale_ub = kDefScaleUb, float aspect_lb = kDefAspectLb, float aspect_ub = kDefAspectUb,
|
||||
InterpolationMode interpolation = kDefInterpolation, int32_t max_iter = kDefMaxIter);
|
||||
InterpolationMode interpolation = kDefInterpolation, int32_t max_attempts = kDefMaxIter);
|
||||
|
||||
RandomCropAndResizeOp() = default;
|
||||
|
||||
|
|
|
@ -28,9 +28,9 @@ class RandomCropAndResizeWithBBoxOp : public RandomCropAndResizeOp {
|
|||
RandomCropAndResizeWithBBoxOp(int32_t target_height, int32_t target_width, float scale_lb = kDefScaleLb,
|
||||
float scale_ub = kDefScaleUb, float aspect_lb = kDefAspectLb,
|
||||
float aspect_ub = kDefAspectUb, InterpolationMode interpolation = kDefInterpolation,
|
||||
int32_t max_iter = kDefMaxIter)
|
||||
int32_t max_attempts = kDefMaxIter)
|
||||
: RandomCropAndResizeOp(target_height, target_width, scale_lb, scale_ub, aspect_lb, aspect_ub, interpolation,
|
||||
max_iter) {}
|
||||
max_attempts) {}
|
||||
|
||||
~RandomCropAndResizeWithBBoxOp() override = default;
|
||||
|
||||
|
|
|
@ -23,9 +23,9 @@ namespace mindspore {
|
|||
namespace dataset {
|
||||
RandomCropDecodeResizeOp::RandomCropDecodeResizeOp(int32_t target_height, int32_t target_width, float scale_lb,
|
||||
float scale_ub, float aspect_lb, float aspect_ub,
|
||||
InterpolationMode interpolation, int32_t max_iter)
|
||||
InterpolationMode interpolation, int32_t max_attempts)
|
||||
: RandomCropAndResizeOp(target_height, target_width, scale_lb, scale_ub, aspect_lb, aspect_ub, interpolation,
|
||||
max_iter) {}
|
||||
max_attempts) {}
|
||||
|
||||
Status RandomCropDecodeResizeOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
if (input == nullptr) {
|
||||
|
|
|
@ -33,7 +33,7 @@ class RandomCropDecodeResizeOp : public RandomCropAndResizeOp {
|
|||
public:
|
||||
RandomCropDecodeResizeOp(int32_t target_height, int32_t target_width, float scale_lb = kDefScaleLb,
|
||||
float scale_ub = kDefScaleUb, float aspect_lb = kDefAspectLb, float aspect_ub = kDefAspectUb,
|
||||
InterpolationMode interpolation = kDefInterpolation, int32_t max_iter = kDefMaxIter);
|
||||
InterpolationMode interpolation = kDefInterpolation, int32_t max_attempts = kDefMaxIter);
|
||||
|
||||
explicit RandomCropDecodeResizeOp(const RandomCropAndResizeOp &rhs) : RandomCropAndResizeOp(rhs) {}
|
||||
|
||||
|
|
|
@ -33,7 +33,7 @@ const uint8_t RandomCropOp::kDefFillG = 0;
|
|||
const uint8_t RandomCropOp::kDefFillB = 0;
|
||||
|
||||
RandomCropOp::RandomCropOp(int32_t crop_height, int32_t crop_width, int32_t pad_top, int32_t pad_bottom,
|
||||
int32_t pad_left, int32_t pad_right, BorderType border_types, bool pad_if_needed,
|
||||
int32_t pad_left, int32_t pad_right, bool pad_if_needed, BorderType padding_mode,
|
||||
uint8_t fill_r, uint8_t fill_g, uint8_t fill_b)
|
||||
: crop_height_(crop_height),
|
||||
crop_width_(crop_width),
|
||||
|
@ -42,7 +42,7 @@ RandomCropOp::RandomCropOp(int32_t crop_height, int32_t crop_width, int32_t pad_
|
|||
pad_left_(pad_left),
|
||||
pad_right_(pad_right),
|
||||
pad_if_needed_(pad_if_needed),
|
||||
border_type_(border_types),
|
||||
border_type_(padding_mode),
|
||||
fill_r_(fill_r),
|
||||
fill_g_(fill_g),
|
||||
fill_b_(fill_b) {
|
||||
|
|
|
@ -43,7 +43,7 @@ class RandomCropOp : public TensorOp {
|
|||
|
||||
RandomCropOp(int32_t crop_height, int32_t crop_width, int32_t pad_top = kDefPadTop,
|
||||
int32_t pad_bottom = kDefPadBottom, int32_t pad_left = kDefPadLeft, int32_t pad_right = kDefPadRight,
|
||||
BorderType border_types = kDefBorderType, bool pad_if_needed = kDefPadIfNeeded,
|
||||
bool pad_if_needed = kDefPadIfNeeded, BorderType padding_mode = kDefBorderType,
|
||||
uint8_t fill_r = kDefFillR, uint8_t fill_g = kDefFillG, uint8_t fill_b = kDefFillB);
|
||||
|
||||
RandomCropOp(const RandomCropOp &rhs) = default;
|
||||
|
|
|
@ -29,10 +29,10 @@ class RandomCropWithBBoxOp : public RandomCropOp {
|
|||
// Constructor for RandomCropWithBBoxOp, with default value and passing to base class constructor
|
||||
RandomCropWithBBoxOp(int32_t crop_height, int32_t crop_width, int32_t pad_top = kDefPadTop,
|
||||
int32_t pad_bottom = kDefPadBottom, int32_t pad_left = kDefPadLeft,
|
||||
int32_t pad_right = kDefPadRight, BorderType border_types = kDefBorderType,
|
||||
bool pad_if_needed = kDefPadIfNeeded, uint8_t fill_r = kDefFillR, uint8_t fill_g = kDefFillG,
|
||||
int32_t pad_right = kDefPadRight, bool pad_if_needed = kDefPadIfNeeded,
|
||||
BorderType padding_mode = kDefBorderType, uint8_t fill_r = kDefFillR, uint8_t fill_g = kDefFillG,
|
||||
uint8_t fill_b = kDefFillB)
|
||||
: RandomCropOp(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right, border_types, pad_if_needed,
|
||||
: RandomCropOp(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right, pad_if_needed, padding_mode,
|
||||
fill_r, fill_g, fill_b) {}
|
||||
|
||||
~RandomCropWithBBoxOp() override = default;
|
||||
|
|
|
@ -32,7 +32,7 @@ class RandomHorizontalFlipOp : public TensorOp {
|
|||
// Default values, also used by python_bindings.cc
|
||||
static const float kDefProbability;
|
||||
|
||||
explicit RandomHorizontalFlipOp(float probability = kDefProbability) : distribution_(probability) {
|
||||
explicit RandomHorizontalFlipOp(float prob = kDefProbability) : distribution_(prob) {
|
||||
is_deterministic_ = false;
|
||||
rnd_.seed(GetSeed());
|
||||
}
|
||||
|
|
|
@ -33,14 +33,13 @@ const uint8_t RandomRotationOp::kDefFillG = 0;
|
|||
const uint8_t RandomRotationOp::kDefFillB = 0;
|
||||
|
||||
// constructor
|
||||
RandomRotationOp::RandomRotationOp(float start_degree, float end_degree, float center_x, float center_y,
|
||||
InterpolationMode interpolation, bool expand, uint8_t fill_r, uint8_t fill_g,
|
||||
uint8_t fill_b)
|
||||
RandomRotationOp::RandomRotationOp(float start_degree, float end_degree, InterpolationMode resample, bool expand,
|
||||
float center_x, float center_y, uint8_t fill_r, uint8_t fill_g, uint8_t fill_b)
|
||||
: degree_start_(start_degree),
|
||||
degree_end_(end_degree),
|
||||
center_x_(center_x),
|
||||
center_y_(center_y),
|
||||
interpolation_(interpolation),
|
||||
interpolation_(resample),
|
||||
expand_(expand),
|
||||
fill_r_(fill_r),
|
||||
fill_g_(fill_g),
|
||||
|
|
|
@ -42,18 +42,18 @@ class RandomRotationOp : public TensorOp {
|
|||
// Constructor for RandomRotationOp
|
||||
// @param startDegree starting range for random degree
|
||||
// @param endDegree ending range for random degree
|
||||
// @param centerX x coordinate for center of image rotation
|
||||
// @param centerY y coordinate for center of image rotation
|
||||
// @param interpolation DE interpolation mode for rotation
|
||||
// @param expand option for the output image shape to change
|
||||
// @param center_x coordinate for center of image rotation
|
||||
// @param center_y coordinate for center of image rotation
|
||||
// @param fill_r R value for the color to pad with
|
||||
// @param fill_g G value for the color to pad with
|
||||
// @param fill_b B value for the color to pad with
|
||||
// @details the randomly chosen degree is uniformly distributed
|
||||
// @details the output shape, if changed, will contain the entire rotated image
|
||||
// @note maybe using unsigned long int isn't the best here according to our coding rules
|
||||
RandomRotationOp(float start_degree, float end_degree, float center_x = kDefCenterX, float center_y = kDefCenterY,
|
||||
InterpolationMode interpolation = kDefInterpolation, bool expand = kDefExpand,
|
||||
RandomRotationOp(float start_degree, float end_degree, InterpolationMode resample = kDefInterpolation,
|
||||
bool expand = kDefExpand, float center_x = kDefCenterX, float center_y = kDefCenterY,
|
||||
uint8_t fill_r = kDefFillR, uint8_t fill_g = kDefFillG, uint8_t fill_b = kDefFillB);
|
||||
|
||||
~RandomRotationOp() override = default;
|
||||
|
|
|
@ -32,7 +32,7 @@ class RandomVerticalFlipOp : public TensorOp {
|
|||
// Default values, also used by python_bindings.cc
|
||||
static const float kDefProbability;
|
||||
|
||||
explicit RandomVerticalFlipOp(float probability = kDefProbability) : distribution_(probability) {
|
||||
explicit RandomVerticalFlipOp(float prob = kDefProbability) : distribution_(prob) {
|
||||
rnd_.seed(GetSeed());
|
||||
is_deterministic_ = false;
|
||||
}
|
||||
|
|
|
@ -28,7 +28,7 @@ namespace mindspore {
|
|||
namespace dataset {
|
||||
class RescaleOp : public TensorOp {
|
||||
public:
|
||||
RescaleOp(float rescale_ratio, float shift_ratio) : rescale_(rescale_ratio), shift_(shift_ratio) {}
|
||||
RescaleOp(float rescale, float shift) : rescale_(rescale), shift_(shift) {}
|
||||
|
||||
~RescaleOp() override = default;
|
||||
|
||||
|
|
|
@ -45,8 +45,8 @@ class ResizeOp : public TensorOp {
|
|||
// @param size2: the second size of output. If this is also provided, the output size
|
||||
// will be (size1, size2)
|
||||
// @param InterpolationMode: the interpolation mode being used.
|
||||
explicit ResizeOp(int32_t size1, int32_t size2 = kDefWidth, InterpolationMode mInterpolation = kDefInterpolation)
|
||||
: size1_(size1), size2_(size2), interpolation_(mInterpolation) {}
|
||||
explicit ResizeOp(int32_t size1, int32_t size2 = kDefWidth, InterpolationMode interpolation = kDefInterpolation)
|
||||
: size1_(size1), size2_(size2), interpolation_(interpolation) {}
|
||||
|
||||
ResizeOp(const ResizeOp &rhs) = default;
|
||||
|
||||
|
|
|
@ -27,9 +27,9 @@ namespace dataset {
|
|||
SoftDvppDecodeRandomCropResizeJpegOp::SoftDvppDecodeRandomCropResizeJpegOp(int32_t target_height, int32_t target_width,
|
||||
float scale_lb, float scale_ub,
|
||||
float aspect_lb, float aspect_ub,
|
||||
int32_t max_iter)
|
||||
int32_t max_attempts)
|
||||
: RandomCropAndResizeOp(target_height, target_width, scale_lb, scale_ub, aspect_lb, aspect_ub,
|
||||
InterpolationMode::kLinear, max_iter) {}
|
||||
InterpolationMode::kLinear, max_attempts) {}
|
||||
|
||||
Status SoftDvppDecodeRandomCropResizeJpegOp::GetCropInfo(const std::shared_ptr<Tensor> &input,
|
||||
SoftDpCropInfo *crop_info) {
|
||||
|
|
|
@ -32,7 +32,7 @@ class SoftDvppDecodeRandomCropResizeJpegOp : public RandomCropAndResizeOp {
|
|||
public:
|
||||
SoftDvppDecodeRandomCropResizeJpegOp(int32_t target_height, int32_t target_width, float scale_lb = kDefScaleLb,
|
||||
float scale_ub = kDefScaleUb, float aspect_lb = kDefAspectLb,
|
||||
float aspect_ub = kDefAspectUb, int32_t max_iter = kDefMaxIter);
|
||||
float aspect_ub = kDefAspectUb, int32_t max_attempts = kDefMaxIter);
|
||||
|
||||
/// \brief Destructor
|
||||
~SoftDvppDecodeRandomCropResizeJpegOp() = default;
|
||||
|
|
|
@ -131,9 +131,7 @@ Status FillOperation::ValidateParams() {
|
|||
std::shared_ptr<TensorOp> FillOperation::Build() { return std::make_shared<FillOp>(fill_value_); }
|
||||
|
||||
Status FillOperation::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args;
|
||||
args["fill_value"] = fill_value_->ToString();
|
||||
*out_json = args;
|
||||
RETURN_IF_NOT_OK(fill_value_->to_json(out_json));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
|
@ -218,7 +216,7 @@ std::shared_ptr<TensorOp> RandomApplyOperation::Build() {
|
|||
std::vector<std::shared_ptr<TensorOp>> tensor_ops;
|
||||
(void)std::transform(transforms_.begin(), transforms_.end(), std::back_inserter(tensor_ops),
|
||||
[](std::shared_ptr<TensorOperation> op) -> std::shared_ptr<TensorOp> { return op->Build(); });
|
||||
return std::make_shared<RandomApplyOp>(prob_, tensor_ops);
|
||||
return std::make_shared<RandomApplyOp>(tensor_ops, prob_);
|
||||
}
|
||||
|
||||
// RandomChoiceOperation
|
||||
|
|
|
@ -97,7 +97,7 @@ std::shared_ptr<TensorOp> RandomCropOperation::Build() {
|
|||
}
|
||||
|
||||
auto tensor_op = std::make_shared<RandomCropOp>(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right,
|
||||
padding_mode_, pad_if_needed_, fill_r, fill_g, fill_b);
|
||||
pad_if_needed_, padding_mode_, fill_r, fill_g, fill_b);
|
||||
return tensor_op;
|
||||
}
|
||||
|
||||
|
|
|
@ -98,7 +98,7 @@ std::shared_ptr<TensorOp> RandomCropWithBBoxOperation::Build() {
|
|||
|
||||
auto tensor_op =
|
||||
std::make_shared<RandomCropWithBBoxOp>(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right,
|
||||
padding_mode_, pad_if_needed_, fill_r, fill_g, fill_b);
|
||||
pad_if_needed_, padding_mode_, fill_r, fill_g, fill_b);
|
||||
return tensor_op;
|
||||
}
|
||||
|
||||
|
|
|
@ -31,8 +31,7 @@ namespace vision {
|
|||
#ifndef ENABLE_ANDROID
|
||||
|
||||
// RandomHorizontalFlipOperation
|
||||
RandomHorizontalFlipOperation::RandomHorizontalFlipOperation(float probability)
|
||||
: TensorOperation(true), probability_(probability) {}
|
||||
RandomHorizontalFlipOperation::RandomHorizontalFlipOperation(float prob) : TensorOperation(true), probability_(prob) {}
|
||||
|
||||
RandomHorizontalFlipOperation::~RandomHorizontalFlipOperation() = default;
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ constexpr char kRandomHorizontalFlipOperation[] = "RandomHorizontalFlip";
|
|||
|
||||
class RandomHorizontalFlipOperation : public TensorOperation {
|
||||
public:
|
||||
explicit RandomHorizontalFlipOperation(float probability);
|
||||
explicit RandomHorizontalFlipOperation(float prob);
|
||||
|
||||
~RandomHorizontalFlipOperation();
|
||||
|
||||
|
|
|
@ -30,12 +30,11 @@ namespace vision {
|
|||
#ifndef ENABLE_ANDROID
|
||||
|
||||
// Function to create RandomRotationOperation.
|
||||
RandomRotationOperation::RandomRotationOperation(std::vector<float> degrees, InterpolationMode interpolation_mode,
|
||||
bool expand, std::vector<float> center,
|
||||
std::vector<uint8_t> fill_value)
|
||||
RandomRotationOperation::RandomRotationOperation(std::vector<float> degrees, InterpolationMode resample, bool expand,
|
||||
std::vector<float> center, std::vector<uint8_t> fill_value)
|
||||
: TensorOperation(true),
|
||||
degrees_(degrees),
|
||||
interpolation_mode_(interpolation_mode),
|
||||
interpolation_mode_(resample),
|
||||
expand_(expand),
|
||||
center_(center),
|
||||
fill_value_(fill_value) {}
|
||||
|
@ -98,7 +97,7 @@ std::shared_ptr<TensorOp> RandomRotationOperation::Build() {
|
|||
}
|
||||
|
||||
std::shared_ptr<RandomRotationOp> tensor_op = std::make_shared<RandomRotationOp>(
|
||||
start_degree, end_degree, center_[0], center_[1], interpolation_mode_, expand_, fill_r, fill_g, fill_b);
|
||||
start_degree, end_degree, interpolation_mode_, expand_, center_[0], center_[1], fill_r, fill_g, fill_b);
|
||||
return tensor_op;
|
||||
}
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ constexpr char kRandomRotationOperation[] = "RandomRotation";
|
|||
|
||||
class RandomRotationOperation : public TensorOperation {
|
||||
public:
|
||||
RandomRotationOperation(std::vector<float> degrees, InterpolationMode interpolation_mode, bool expand,
|
||||
RandomRotationOperation(std::vector<float> degrees, InterpolationMode resample, bool expand,
|
||||
std::vector<float> center, std::vector<uint8_t> fill_value);
|
||||
|
||||
~RandomRotationOperation();
|
||||
|
|
|
@ -31,8 +31,7 @@ namespace vision {
|
|||
#ifndef ENABLE_ANDROID
|
||||
|
||||
// RandomVerticalFlipOperation
|
||||
RandomVerticalFlipOperation::RandomVerticalFlipOperation(float probability)
|
||||
: TensorOperation(true), probability_(probability) {}
|
||||
RandomVerticalFlipOperation::RandomVerticalFlipOperation(float prob) : TensorOperation(true), probability_(prob) {}
|
||||
|
||||
RandomVerticalFlipOperation::~RandomVerticalFlipOperation() = default;
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ constexpr char kRandomVerticalFlipOperation[] = "RandomVerticalFlip";
|
|||
|
||||
class RandomVerticalFlipOperation : public TensorOperation {
|
||||
public:
|
||||
explicit RandomVerticalFlipOperation(float probability);
|
||||
explicit RandomVerticalFlipOperation(float prob);
|
||||
|
||||
~RandomVerticalFlipOperation();
|
||||
|
||||
|
|
|
@ -31,8 +31,8 @@ namespace vision {
|
|||
#ifndef ENABLE_ANDROID
|
||||
|
||||
// RandomVerticalFlipWithBBoxOperation
|
||||
RandomVerticalFlipWithBBoxOperation::RandomVerticalFlipWithBBoxOperation(float probability)
|
||||
: TensorOperation(true), probability_(probability) {}
|
||||
RandomVerticalFlipWithBBoxOperation::RandomVerticalFlipWithBBoxOperation(float prob)
|
||||
: TensorOperation(true), probability_(prob) {}
|
||||
|
||||
RandomVerticalFlipWithBBoxOperation::~RandomVerticalFlipWithBBoxOperation() = default;
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ constexpr char kRandomVerticalFlipWithBBoxOperation[] = "RandomVerticalFlipWithB
|
|||
|
||||
class RandomVerticalFlipWithBBoxOperation : public TensorOperation {
|
||||
public:
|
||||
explicit RandomVerticalFlipWithBBoxOperation(float probability);
|
||||
explicit RandomVerticalFlipWithBBoxOperation(float prob);
|
||||
|
||||
~RandomVerticalFlipWithBBoxOperation();
|
||||
|
||||
|
|
|
@ -37,7 +37,7 @@ constexpr char kResizeOperation[] = "Resize";
|
|||
|
||||
class ResizeOperation : public TensorOperation {
|
||||
public:
|
||||
explicit ResizeOperation(std::vector<int32_t> size, InterpolationMode interpolation_mode);
|
||||
explicit ResizeOperation(std::vector<int32_t> size, InterpolationMode interpolation);
|
||||
|
||||
~ResizeOperation();
|
||||
|
||||
|
|
|
@ -257,7 +257,7 @@ std::shared_ptr<TensorOp> NgramOperation::Build() {
|
|||
int32_t r_len = right_pad_.second;
|
||||
std::string l_pad = left_pad_.first;
|
||||
std::string r_pad = right_pad_.first;
|
||||
std::shared_ptr<NgramOp> tensor_op = std::make_shared<NgramOp>(ngrams_, l_len, r_len, l_pad, r_pad, separator_);
|
||||
std::shared_ptr<NgramOp> tensor_op = std::make_shared<NgramOp>(ngrams_, l_len, l_pad, r_len, r_pad, separator_);
|
||||
return tensor_op;
|
||||
}
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
NgramOp::NgramOp(const std::vector<int32_t> &ngrams, int32_t l_len, int32_t r_len, const std::string &l_pad,
|
||||
NgramOp::NgramOp(const std::vector<int32_t> &ngrams, int32_t l_len, const std::string &l_pad, int32_t r_len,
|
||||
const std::string &r_pad, const std::string &separator)
|
||||
: ngrams_(ngrams),
|
||||
l_len_(l_len),
|
||||
|
|
|
@ -32,12 +32,12 @@ class NgramOp : public TensorOp {
|
|||
public:
|
||||
// Constructor of Ngram model
|
||||
// @param const std::vector<int32_t> &ngrams
|
||||
// @param int32_tl_len - padding length on the left
|
||||
// @param int32_t r_len - padding length on the right
|
||||
// @param int32_t l_len - padding length on the left
|
||||
// @param const std::string &l_pad - padding token on the left
|
||||
// @param int32_t r_len - padding length on the right
|
||||
// @param const std::string &r_pad - padding token on the right
|
||||
// @param const std::string &separator - use to join strings
|
||||
NgramOp(const std::vector<int32_t> &ngrams, int32_t l_len, int32_t r_len, const std::string &l_pad,
|
||||
NgramOp(const std::vector<int32_t> &ngrams, int32_t l_len, const std::string &l_pad, int32_t r_len,
|
||||
const std::string &r_pad, const std::string &separator);
|
||||
|
||||
// perform ngram model on each tensor
|
||||
|
|
|
@ -32,9 +32,9 @@
|
|||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
||||
ToNumberOp::ToNumberOp(const DataType &cast_to_type) : cast_to_type_(cast_to_type) {}
|
||||
ToNumberOp::ToNumberOp(const DataType &data_type) : cast_to_type_(data_type) {}
|
||||
|
||||
ToNumberOp::ToNumberOp(const std::string &cast_to_type) : cast_to_type_(DataType(cast_to_type)) {}
|
||||
ToNumberOp::ToNumberOp(const std::string &data_type) : cast_to_type_(DataType(data_type)) {}
|
||||
|
||||
Status ToNumberOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(input->type() == DataType::DE_STRING, "ToNumber: input should be string datatype.");
|
||||
|
|
|
@ -32,12 +32,12 @@ namespace dataset {
|
|||
class ToNumberOp : public TensorOp {
|
||||
public:
|
||||
// Constructor of ToNumberOp
|
||||
// @param const DataType &cast_to_type - the type to convert string inputs to.
|
||||
explicit ToNumberOp(const DataType &cast_to_type);
|
||||
// @param const DataType &data_type - the type to convert string inputs to.
|
||||
explicit ToNumberOp(const DataType &data_type);
|
||||
|
||||
// Constructor of ToNumberOp
|
||||
// @param const std::string &cast_to_type - the type in string form to convert string inputs to.
|
||||
explicit ToNumberOp(const std::string &cast_to_type);
|
||||
// @param const std::string &data_type - the type in string form to convert string inputs to.
|
||||
explicit ToNumberOp(const std::string &data_type);
|
||||
|
||||
~ToNumberOp() override = default;
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ namespace dataset {
|
|||
|
||||
class TruncateSequencePairOp : public TensorOp {
|
||||
public:
|
||||
explicit TruncateSequencePairOp(dsize_t length) : max_length_(length) {}
|
||||
explicit TruncateSequencePairOp(dsize_t max_length) : max_length_(max_length) {}
|
||||
|
||||
~TruncateSequencePairOp() override = default;
|
||||
|
||||
|
|
|
@ -273,7 +273,7 @@ TEST_F(MindDataTestCacheOp, DISABLED_TestRandomDataCache1) {
|
|||
|
||||
int64_t num_samples = 0;
|
||||
int64_t start_index = 0;
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(start_index, num_samples);
|
||||
rc = CacheOp::Builder()
|
||||
.SetNumWorkers(5)
|
||||
.SetClient(myClient)
|
||||
|
@ -391,18 +391,14 @@ TEST_F(MindDataTestCacheOp, DISABLED_TestRandomDataCacheSpill) {
|
|||
// CacheOp
|
||||
int64_t num_samples = 0;
|
||||
int64_t start_index = 0;
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(start_index, num_samples);
|
||||
CacheClient::Builder builder;
|
||||
builder.SetSessionId(env_session).SetCacheMemSz(4).SetSpill(true);
|
||||
std::shared_ptr<CacheClient> myClient;
|
||||
rc = builder.Build(&myClient);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
std::shared_ptr<CacheOp> myCacheOp;
|
||||
rc = CacheOp::Builder()
|
||||
.SetNumWorkers(4)
|
||||
.SetClient(myClient)
|
||||
.SetSampler(std::move(seq_sampler))
|
||||
.Build(&myCacheOp);
|
||||
rc = CacheOp::Builder().SetNumWorkers(4).SetClient(myClient).SetSampler(std::move(seq_sampler)).Build(&myCacheOp);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
rc = myTree->AssociateNode(myCacheOp);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
|
@ -466,7 +462,7 @@ TEST_F(MindDataTestCacheOp, DISABLED_TestImageFolderCacheMerge) {
|
|||
rc = GetSessionFromEnv(&env_session);
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(start_index, num_samples);
|
||||
|
||||
CacheClient::Builder ccbuilder;
|
||||
ccbuilder.SetSessionId(env_session).SetCacheMemSz(0).SetSpill(true);
|
||||
|
|
|
@ -138,7 +138,7 @@ TEST_F(MindDataTestCelebaDataset, TestCelebaRepeat) {
|
|||
TEST_F(MindDataTestCelebaDataset, TestSubsetRandomSamplerCeleba) {
|
||||
std::vector<int64_t> indices({1});
|
||||
int64_t num_samples = 0;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<SubsetRandomSamplerRT>(num_samples, indices);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<SubsetRandomSamplerRT>(indices, num_samples);
|
||||
uint32_t expect_labels[1][40] = {{0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
|
||||
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1}};
|
||||
std::string dir = datasets_root_path_ + "/testCelebAData/";
|
||||
|
|
|
@ -35,9 +35,9 @@
|
|||
namespace common = mindspore::common;
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::ERROR;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::MsLogLevel::ERROR;
|
||||
|
||||
std::shared_ptr<ExecutionTree> Build(std::vector<std::shared_ptr<DatasetOp>> ops);
|
||||
|
||||
|
@ -60,11 +60,11 @@ class MindDataTestCifarOp : public UT::DatasetOpTesting {
|
|||
};
|
||||
|
||||
TEST_F(MindDataTestCifarOp, TestSequentialSamplerCifar10) {
|
||||
//Note: CIFAR and Mnist datasets are not included
|
||||
//as part of the build tree.
|
||||
//Download datasets and rebuild if data doesn't
|
||||
//appear in this dataset
|
||||
//Example: python tests/dataset/data/prep_data.py
|
||||
// Note: CIFAR and Mnist datasets are not included
|
||||
// as part of the build tree.
|
||||
// Download datasets and rebuild if data doesn't
|
||||
// appear in this dataset
|
||||
// Example: python tests/dataset/data/prep_data.py
|
||||
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
|
||||
auto tree = Build({Cifarop(16, 2, 32, folder_path, nullptr)});
|
||||
tree->Prepare();
|
||||
|
@ -93,7 +93,7 @@ TEST_F(MindDataTestCifarOp, TestSequentialSamplerCifar10) {
|
|||
TEST_F(MindDataTestCifarOp, TestRandomSamplerCifar10) {
|
||||
uint32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
GlobalContext::config_manager()->set_seed(0);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_unique<RandomSamplerRT>(12, true, true);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_unique<RandomSamplerRT>(true, 12, true);
|
||||
std::string folder_path = datasets_root_path_ + "/testCifar10Data/";
|
||||
auto tree = Build({Cifarop(16, 2, 32, folder_path, std::move(sampler))});
|
||||
tree->Prepare();
|
||||
|
@ -139,8 +139,8 @@ TEST_F(MindDataTestCifarOp, TestSequentialSamplerCifar100) {
|
|||
while (tensor_map.size() != 0 && i < 100) {
|
||||
tensor_map["coarse_label"]->GetItemAt<uint32_t>(&coarse, {});
|
||||
tensor_map["fine_label"]->GetItemAt<uint32_t>(&fine, {});
|
||||
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << " coarse:"
|
||||
<< coarse << " fine:" << fine << "\n";
|
||||
MS_LOG(DEBUG) << "row: " << i << "\t" << tensor_map["image"]->shape() << " coarse:" << coarse << " fine:" << fine
|
||||
<< "\n";
|
||||
i++;
|
||||
ASSERT_OK(di.GetNextAsMap(&tensor_map));
|
||||
}
|
||||
|
|
|
@ -27,9 +27,9 @@
|
|||
#include <unordered_set>
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
|
||||
class MindDataTestDistributedSampler : public UT::Common {
|
||||
public:
|
||||
|
@ -48,7 +48,7 @@ TEST_F(MindDataTestDistributedSampler, TestTwoShardsOne) {
|
|||
uint64_t num_samples = 7;
|
||||
|
||||
// create sampler with replacement = true
|
||||
DistributedSamplerRT m_sampler(num_samples, 2, 0, false, 0, -1, false);
|
||||
DistributedSamplerRT m_sampler(2, 0, false, num_samples, 0, -1, false);
|
||||
DummyRandomAccessOp dummyRandomAccessOp(num_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
|
@ -72,7 +72,7 @@ TEST_F(MindDataTestDistributedSampler, TestTwoShardsTwo) {
|
|||
uint64_t num_samples = 7;
|
||||
|
||||
// create sampler with replacement = true
|
||||
DistributedSamplerRT m_sampler(num_samples, 2, 1, false, 0, -1, false);
|
||||
DistributedSamplerRT m_sampler(2, 1, false, num_samples, 0, -1, false);
|
||||
DummyRandomAccessOp dummyRandomAccessOp(num_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
|
@ -97,7 +97,7 @@ TEST_F(MindDataTestDistributedSampler, TestThreeShards) {
|
|||
uint64_t num_samples = 2;
|
||||
|
||||
// create sampler with replacement = true
|
||||
DistributedSamplerRT m_sampler(num_samples, 3, 2, false, 0, -1, false);
|
||||
DistributedSamplerRT m_sampler(3, 2, false, num_samples, 0, -1, false);
|
||||
DummyRandomAccessOp dummyRandomAccessOp(num_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
|
|
|
@ -138,7 +138,7 @@ TEST_F(MindDataTestImageFolderSampler, TestRandomSamplerImageFolder) {
|
|||
int32_t original_seed = GlobalContext::config_manager()->seed();
|
||||
GlobalContext::config_manager()->set_seed(0);
|
||||
int64_t num_samples = 12;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_unique<RandomSamplerRT>(num_samples, true, true);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_unique<RandomSamplerRT>(true, num_samples, true);
|
||||
int32_t res[] = {2, 2, 2, 3, 2, 3, 2, 3, 1, 2, 2, 1}; // ground truth label
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
||||
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))});
|
||||
|
@ -206,7 +206,7 @@ TEST_F(MindDataTestImageFolderSampler, TestSubsetRandomSamplerImageFolder) {
|
|||
// id range 0 - 10 is label 0, and id range 11 - 21 is label 1
|
||||
std::vector<int64_t> indices({0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16, 11});
|
||||
int64_t num_samples = 0;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<SubsetRandomSamplerRT>(num_samples, indices);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<SubsetRandomSamplerRT>(indices, num_samples);
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
||||
// Expect 6 samples for label 0 and 1
|
||||
int res[2] = {6, 6};
|
||||
|
@ -244,7 +244,7 @@ TEST_F(MindDataTestImageFolderSampler, TestWeightedRandomSamplerImageFolder) {
|
|||
|
||||
// create sampler with replacement = replacement
|
||||
std::shared_ptr<SamplerRT> sampler =
|
||||
std::make_shared<WeightedRandomSamplerRT>(num_samples, weights, true, samples_per_tensor);
|
||||
std::make_shared<WeightedRandomSamplerRT>(weights, num_samples, true, samples_per_tensor);
|
||||
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
||||
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))});
|
||||
|
@ -302,7 +302,7 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderClassIndex) {
|
|||
|
||||
TEST_F(MindDataTestImageFolderSampler, TestDistributedSampler) {
|
||||
int64_t num_samples = 0;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<DistributedSamplerRT>(num_samples, 11, 10, false);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<DistributedSamplerRT>(11, 10, false, num_samples);
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
||||
auto op1 = ImageFolder(16, 2, 32, folder_path, false, std::move(sampler));
|
||||
auto op2 = Repeat(4);
|
||||
|
@ -334,7 +334,7 @@ TEST_F(MindDataTestImageFolderSampler, TestDistributedSampler) {
|
|||
|
||||
TEST_F(MindDataTestImageFolderSampler, TestPKSamplerImageFolder) {
|
||||
int64_t num_samples = 0;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<PKSamplerRT>(num_samples, 3, false, 4);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<PKSamplerRT>(3, false, num_samples, 4);
|
||||
int32_t res[] = {0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3}; // ground truth label
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
||||
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler))});
|
||||
|
@ -369,7 +369,7 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderDecode) {
|
|||
map["wrong folder name"] = 1234; // this is skipped
|
||||
int64_t num_samples = 20;
|
||||
int64_t start_index = 0;
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(start_index, num_samples);
|
||||
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(seq_sampler), map, true)});
|
||||
int64_t res[2] = {111, 333};
|
||||
tree->Prepare();
|
||||
|
@ -399,7 +399,7 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderDecode) {
|
|||
|
||||
TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding1) {
|
||||
int64_t num_samples = 5;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<DistributedSamplerRT>(num_samples, 4, 0, false);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<DistributedSamplerRT>(4, 0, false, num_samples);
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
||||
// numWrks, rows, conns, path, shuffle, sampler, map, numSamples, decode
|
||||
auto tree = Build({ImageFolder(16, 2, 32, folder_path, false, std::move(sampler), {})});
|
||||
|
@ -429,7 +429,7 @@ TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding1) {
|
|||
|
||||
TEST_F(MindDataTestImageFolderSampler, TestImageFolderSharding2) {
|
||||
int64_t num_samples = 12;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<DistributedSamplerRT>(num_samples, 4, 3, false);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<DistributedSamplerRT>(4, 3, false, num_samples);
|
||||
std::string folder_path = datasets_root_path_ + "/testPK/data";
|
||||
// numWrks, rows, conns, path, shuffle, sampler, map, numSamples, decode
|
||||
auto tree = Build({ImageFolder(16, 16, 32, folder_path, false, std::move(sampler), {})});
|
||||
|
|
|
@ -33,9 +33,9 @@
|
|||
namespace common = mindspore::common;
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::ERROR;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::MsLogLevel::ERROR;
|
||||
|
||||
std::shared_ptr<RepeatOp> Repeat(int repeatCnt);
|
||||
|
||||
|
@ -95,7 +95,7 @@ TEST_F(MindDataTestManifest, TestSequentialManifestWithRepeat) {
|
|||
TEST_F(MindDataTestManifest, TestSubsetRandomSamplerManifest) {
|
||||
std::vector<int64_t> indices({1});
|
||||
int64_t num_samples = 0;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<SubsetRandomSamplerRT>(num_samples, indices);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<SubsetRandomSamplerRT>(indices, num_samples);
|
||||
std::string file = datasets_root_path_ + "/testManifestData/cpp.json";
|
||||
// Expect 6 samples for label 0 and 1
|
||||
auto tree = Build({Manifest(16, 2, 32, file, "train", std::move(sampler))});
|
||||
|
@ -156,7 +156,7 @@ TEST_F(MindDataTestManifest, MindDataTestManifestNumSamples) {
|
|||
std::string file = datasets_root_path_ + "/testManifestData/cpp.json";
|
||||
int64_t num_samples = 1;
|
||||
int64_t start_index = 0;
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(start_index, num_samples);
|
||||
auto op1 = Manifest(16, 2, 32, file, "train", std::move(seq_sampler), {});
|
||||
auto op2 = Repeat(4);
|
||||
op1->set_total_repeats(4);
|
||||
|
@ -189,7 +189,7 @@ TEST_F(MindDataTestManifest, MindDataTestManifestEval) {
|
|||
std::string file = datasets_root_path_ + "/testManifestData/cpp.json";
|
||||
int64_t num_samples = 1;
|
||||
int64_t start_index = 0;
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(start_index, num_samples);
|
||||
auto tree = Build({Manifest(16, 2, 32, file, "eval", std::move(seq_sampler), {})});
|
||||
tree->Prepare();
|
||||
Status rc = tree->Launch();
|
||||
|
|
|
@ -38,9 +38,9 @@
|
|||
|
||||
namespace common = mindspore::common;
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::ERROR;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::MsLogLevel::ERROR;
|
||||
|
||||
std::shared_ptr<BatchOp> Batch(int batch_size = 1, bool drop = false);
|
||||
|
||||
|
@ -77,7 +77,7 @@ TEST_F(MindDataTestMnistSampler, TestSequentialMnistWithRepeat) {
|
|||
std::string folder_path = datasets_root_path_ + "/testMnistData/";
|
||||
int64_t num_samples = 10;
|
||||
int64_t start_index = 0;
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(start_index, num_samples);
|
||||
auto op1 = CreateMnist(16, 2, 32, folder_path, false, std::move(seq_sampler));
|
||||
auto op2 = Repeat(2);
|
||||
op1->set_total_repeats(2);
|
||||
|
@ -111,7 +111,7 @@ TEST_F(MindDataTestMnistSampler, TestSequentialImageFolderWithRepeatBatch) {
|
|||
std::string folder_path = datasets_root_path_ + "/testMnistData/";
|
||||
int64_t num_samples = 10;
|
||||
int64_t start_index = 0;
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index);
|
||||
auto seq_sampler = std::make_shared<SequentialSamplerRT>(start_index, num_samples);
|
||||
auto op1 = CreateMnist(16, 2, 32, folder_path, false, std::move(seq_sampler));
|
||||
auto op2 = Repeat(2);
|
||||
auto op3 = Batch(5);
|
||||
|
@ -119,10 +119,7 @@ TEST_F(MindDataTestMnistSampler, TestSequentialImageFolderWithRepeatBatch) {
|
|||
op1->set_num_repeats_per_epoch(2);
|
||||
auto tree = Build({op1, op2, op3});
|
||||
tree->Prepare();
|
||||
uint32_t res[4][5] = { {0, 0, 0, 0, 0 },
|
||||
{0, 0, 0, 0, 0 },
|
||||
{0, 0, 0, 0, 0 },
|
||||
{0, 0, 0, 0, 0 } };
|
||||
uint32_t res[4][5] = {{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}};
|
||||
Status rc = tree->Launch();
|
||||
if (rc.IsError()) {
|
||||
MS_LOG(ERROR) << "Return code error detected during tree launch: " << rc.ToString() << ".";
|
||||
|
|
|
@ -19,9 +19,9 @@
|
|||
#include "utils/log_adapter.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
|
||||
class MindDataTestRandomCropOp : public UT::CVOP::CVOpCommon {
|
||||
protected:
|
||||
|
@ -35,7 +35,7 @@ TEST_F(MindDataTestRandomCropOp, TestOp1) {
|
|||
// Crop params
|
||||
unsigned int crop_height = 128;
|
||||
unsigned int crop_width = 128;
|
||||
std::unique_ptr<RandomCropOp> op(new RandomCropOp(crop_height, crop_width, 0, 0, 0, 0, BorderType::kConstant, false));
|
||||
std::unique_ptr<RandomCropOp> op(new RandomCropOp(crop_height, crop_width, 0, 0, 0, 0, false, BorderType::kConstant));
|
||||
EXPECT_TRUE(op->OneToOne());
|
||||
Status s = op->Compute(input_tensor_, &output_tensor_);
|
||||
size_t actual = 0;
|
||||
|
@ -52,7 +52,7 @@ TEST_F(MindDataTestRandomCropOp, TestOp2) {
|
|||
unsigned int crop_height = 1280;
|
||||
unsigned int crop_width = 1280;
|
||||
std::unique_ptr<RandomCropOp> op(
|
||||
new RandomCropOp(crop_height, crop_width, 513, 513, 513, 513, BorderType::kConstant, false));
|
||||
new RandomCropOp(crop_height, crop_width, 513, 513, 513, 513, false, BorderType::kConstant));
|
||||
EXPECT_TRUE(op->OneToOne());
|
||||
Status s = op->Compute(input_tensor_, &output_tensor_);
|
||||
EXPECT_EQ(true, s.IsOk());
|
||||
|
|
|
@ -44,7 +44,7 @@ TEST_F(MindDataTestRandomCropWithBBoxOp, TestOp1) {
|
|||
uint32_t current_seed = GlobalContext::config_manager()->seed();
|
||||
GlobalContext::config_manager()->set_seed(327362);
|
||||
std::unique_ptr<RandomCropWithBBoxOp> op(
|
||||
new RandomCropWithBBoxOp(crop_height, crop_width, 0, 0, 0, 0, BorderType::kConstant, false));
|
||||
new RandomCropWithBBoxOp(crop_height, crop_width, 0, 0, 0, 0, false, BorderType::kConstant));
|
||||
for (auto tensor_row_ : images_and_annotations_) {
|
||||
Status s = op->Compute(tensor_row_, &output_tensor_row_);
|
||||
size_t actual = 0;
|
||||
|
@ -79,7 +79,7 @@ TEST_F(MindDataTestRandomCropWithBBoxOp, TestOp2) {
|
|||
GlobalContext::config_manager()->set_seed(327362);
|
||||
|
||||
std::unique_ptr<RandomCropWithBBoxOp> op(
|
||||
new RandomCropWithBBoxOp(crop_height, crop_width, 513, 513, 513, 513, BorderType::kConstant, false));
|
||||
new RandomCropWithBBoxOp(crop_height, crop_width, 513, 513, 513, 513, false, BorderType::kConstant));
|
||||
|
||||
for (auto tensor_row_ : images_and_annotations_) {
|
||||
Status s = op->Compute(tensor_row_, &output_tensor_row_);
|
||||
|
@ -107,7 +107,7 @@ TEST_F(MindDataTestRandomCropWithBBoxOp, TestOp3) {
|
|||
|
||||
std::unique_ptr<RandomCropWithBBoxOp> op(new RandomCropWithBBoxOp(crop_height, crop_width, crop_height * 3 + 1,
|
||||
crop_height * 3 + 1, crop_width * 3 + 1,
|
||||
crop_width * 3 + 1, BorderType::kConstant, false));
|
||||
crop_width * 3 + 1, false, BorderType::kConstant));
|
||||
|
||||
for (auto tensor_row_ : images_and_annotations_) {
|
||||
Status s = op->Compute(tensor_row_, &output_tensor_row_);
|
||||
|
|
|
@ -20,9 +20,9 @@
|
|||
#include "utils/log_adapter.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
|
||||
class MindDataTestRandomRotationOp : public UT::CVOP::CVOpCommon {
|
||||
public:
|
||||
|
@ -38,8 +38,8 @@ TEST_F(MindDataTestRandomRotationOp, TestOp) {
|
|||
float xCenter = -1;
|
||||
float yCenter = -1;
|
||||
bool expand = false;
|
||||
std::unique_ptr<RandomRotationOp> op(new RandomRotationOp(
|
||||
sDegree, eDegree, xCenter, yCenter, InterpolationMode::kLinear, expand));
|
||||
std::unique_ptr<RandomRotationOp> op(
|
||||
new RandomRotationOp(sDegree, eDegree, InterpolationMode::kLinear, expand, xCenter, yCenter));
|
||||
EXPECT_TRUE(op->OneToOne());
|
||||
Status s = op->Compute(input_tensor_, &output_tensor);
|
||||
EXPECT_TRUE(s.IsOk());
|
||||
|
|
|
@ -62,7 +62,7 @@ TEST_F(MindDataTestStandAloneSampler, TestDistributedSampler) {
|
|||
TensorRow sample_row;
|
||||
for (int i = 0; i < 6; i++) {
|
||||
std::shared_ptr<SamplerRT> sampler =
|
||||
std::make_shared<DistributedSamplerRT>(num_samples, 3, i % 3, (i < 3 ? false : true));
|
||||
std::make_shared<DistributedSamplerRT>(3, i % 3, (i < 3 ? false : true), num_samples);
|
||||
sampler->HandshakeRandomAccessOp(&mock);
|
||||
sampler->GetNextSample(&sample_row);
|
||||
tensor = sample_row[0];
|
||||
|
@ -82,7 +82,7 @@ TEST_F(MindDataTestStandAloneSampler, TestStandAoneSequentialSampler) {
|
|||
CreateINT64Tensor(&label2, 2, reinterpret_cast<unsigned char *>(res + 3));
|
||||
int64_t num_samples = 0;
|
||||
int64_t start_index = 0;
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<SequentialSamplerRT>(num_samples, start_index, 3);
|
||||
std::shared_ptr<SamplerRT> sampler = std::make_shared<SequentialSamplerRT>(start_index, num_samples, 3);
|
||||
|
||||
std::shared_ptr<Tensor> tensor;
|
||||
TensorRow sample_row;
|
||||
|
|
|
@ -41,7 +41,7 @@ TEST_F(MindDataTestSubsetRandomSampler, TestAllAtOnce) {
|
|||
std::vector<int64_t> in({0, 1, 2, 3, 4});
|
||||
std::unordered_set<int64_t> in_set(in.begin(), in.end());
|
||||
int64_t num_samples = 0;
|
||||
SubsetRandomSamplerRT sampler(num_samples, in);
|
||||
SubsetRandomSamplerRT sampler(in, num_samples);
|
||||
|
||||
DummyRandomAccessOp dummyRandomAccessOp(5);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
@ -69,7 +69,7 @@ TEST_F(MindDataTestSubsetRandomSampler, TestGetNextSample) {
|
|||
int64_t samples_per_tensor = 10;
|
||||
int64_t num_samples = 0;
|
||||
std::vector<int64_t> input(total_samples, 1);
|
||||
SubsetRandomSamplerRT sampler(num_samples, input, samples_per_tensor);
|
||||
SubsetRandomSamplerRT sampler(input, num_samples, samples_per_tensor);
|
||||
|
||||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
@ -98,7 +98,7 @@ TEST_F(MindDataTestSubsetRandomSampler, TestReset) {
|
|||
std::vector<int64_t> in({0, 1, 2, 3, 4});
|
||||
std::unordered_set<int64_t> in_set(in.begin(), in.end());
|
||||
int64_t num_samples = 0;
|
||||
SubsetRandomSamplerRT sampler(num_samples, in);
|
||||
SubsetRandomSamplerRT sampler(in, num_samples);
|
||||
|
||||
DummyRandomAccessOp dummyRandomAccessOp(5);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
|
|
@ -41,7 +41,7 @@ TEST_F(MindDataTestSubsetSampler, TestAllAtOnce) {
|
|||
std::vector<int64_t> in({3, 1, 4, 0, 1});
|
||||
std::unordered_set<int64_t> in_set(in.begin(), in.end());
|
||||
int64_t num_samples = 0;
|
||||
SubsetSamplerRT sampler(num_samples, in);
|
||||
SubsetSamplerRT sampler(in, num_samples);
|
||||
|
||||
DummyRandomAccessOp dummyRandomAccessOp(5);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
@ -69,7 +69,7 @@ TEST_F(MindDataTestSubsetSampler, TestGetNextSample) {
|
|||
int64_t samples_per_tensor = 10;
|
||||
int64_t num_samples = 0;
|
||||
std::vector<int64_t> input(total_samples, 1);
|
||||
SubsetSamplerRT sampler(num_samples, input, samples_per_tensor);
|
||||
SubsetSamplerRT sampler(input, num_samples, samples_per_tensor);
|
||||
|
||||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
@ -99,7 +99,7 @@ TEST_F(MindDataTestSubsetSampler, TestReset) {
|
|||
std::vector<int64_t> in({0, 1, 2, 3, 4});
|
||||
std::unordered_set<int64_t> in_set(in.begin(), in.end());
|
||||
int64_t num_samples = 0;
|
||||
SubsetSamplerRT sampler(num_samples, in);
|
||||
SubsetSamplerRT sampler(in, num_samples);
|
||||
|
||||
DummyRandomAccessOp dummyRandomAccessOp(5);
|
||||
sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
|
|
@ -536,3 +536,44 @@ TEST_F(MindDataTestTensorDE, TensorEmpty) {
|
|||
t2->Invalidate();
|
||||
ASSERT_TRUE(!t2->HasData());
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestTensorDE, TestTensor_json) {
|
||||
MS_LOG(INFO) << "Doing TestTensor.";
|
||||
std::vector<uint64_t> labels = {1, 1, 2};
|
||||
std::shared_ptr<Tensor> input;
|
||||
Tensor::CreateFromVector(labels, &input);
|
||||
nlohmann::json out_json;
|
||||
input->to_json(&out_json);
|
||||
|
||||
std::shared_ptr<Tensor> check;
|
||||
std::stringstream ss;
|
||||
ss << out_json["shape"];
|
||||
std::string shape = ss.str();
|
||||
ss.str("");
|
||||
ss << out_json["type"];
|
||||
std::string type = ss.str();
|
||||
ss.str("");
|
||||
ss << out_json["data"];
|
||||
std::string data = ss.str();
|
||||
ss.str("");
|
||||
|
||||
ASSERT_TRUE('"' + input->shape().ToString() + '"' == shape);
|
||||
ASSERT_TRUE('"' + input->type().ToString() + '"' == type);
|
||||
|
||||
std::string input_data;
|
||||
input_data.push_back('"');
|
||||
input_data.push_back('[');
|
||||
for (int i = 0; i < labels.size(); i++) {
|
||||
input_data += std::to_string(labels[i]);
|
||||
if (i < labels.size() - 1) {
|
||||
input_data.push_back(',');
|
||||
}
|
||||
}
|
||||
input_data.push_back(']');
|
||||
input_data.push_back('"');
|
||||
|
||||
std::cout << input_data << std::endl;
|
||||
std::cout << data << std::endl;
|
||||
|
||||
ASSERT_TRUE(input_data == data);
|
||||
}
|
||||
|
|
|
@ -21,9 +21,9 @@
|
|||
#include "utils/log_adapter.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::LogStream;
|
||||
using mindspore::ExceptionType::NoExceptionType;
|
||||
using mindspore::MsLogLevel::INFO;
|
||||
|
||||
class MindDataTestToFloat16Op : public UT::CVOP::CVOpCommon {
|
||||
public:
|
||||
|
@ -39,8 +39,8 @@ TEST_F(MindDataTestToFloat16Op, TestOp) {
|
|||
float x_center = -1;
|
||||
float y_center = -1;
|
||||
bool expand = false;
|
||||
std::unique_ptr<RandomRotationOp> op(new RandomRotationOp(
|
||||
s_degree, e_degree, x_center, y_center, InterpolationMode::kLinear, expand));
|
||||
std::unique_ptr<RandomRotationOp> op(
|
||||
new RandomRotationOp(s_degree, e_degree, InterpolationMode::kLinear, expand, x_center, y_center));
|
||||
EXPECT_TRUE(op->OneToOne());
|
||||
Status s = op->Compute(input_tensor_, &output_tensor);
|
||||
EXPECT_TRUE(s.IsOk());
|
||||
|
|
|
@ -51,7 +51,7 @@ TEST_F(MindDataTestWeightedRandomSampler, TestOneshotReplacement) {
|
|||
std::vector<uint64_t> freq(total_samples, 0);
|
||||
|
||||
// create sampler with replacement = true
|
||||
WeightedRandomSamplerRT m_sampler(num_samples, weights, true);
|
||||
WeightedRandomSamplerRT m_sampler(weights, num_samples, true);
|
||||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
|
@ -80,7 +80,7 @@ TEST_F(MindDataTestWeightedRandomSampler, TestOneshotNoReplacement) {
|
|||
std::vector<uint64_t> freq(total_samples, 0);
|
||||
|
||||
// create sampler with replacement = replacement
|
||||
WeightedRandomSamplerRT m_sampler(num_samples, weights, false);
|
||||
WeightedRandomSamplerRT m_sampler(weights, num_samples, false);
|
||||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
|
@ -115,7 +115,7 @@ TEST_F(MindDataTestWeightedRandomSampler, TestGetNextSampleReplacement) {
|
|||
std::vector<double> weights(total_samples, std::rand() % 100);
|
||||
|
||||
// create sampler with replacement = replacement
|
||||
WeightedRandomSamplerRT m_sampler(num_samples, weights, true, samples_per_tensor);
|
||||
WeightedRandomSamplerRT m_sampler(weights, num_samples, true, samples_per_tensor);
|
||||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
|
@ -150,7 +150,7 @@ TEST_F(MindDataTestWeightedRandomSampler, TestGetNextSampleNoReplacement) {
|
|||
std::vector<uint64_t> freq(total_samples, 0);
|
||||
|
||||
// create sampler with replacement = replacement
|
||||
WeightedRandomSamplerRT m_sampler(num_samples, weights, false, samples_per_tensor);
|
||||
WeightedRandomSamplerRT m_sampler(weights, num_samples, false, samples_per_tensor);
|
||||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
|
@ -190,7 +190,7 @@ TEST_F(MindDataTestWeightedRandomSampler, TestResetReplacement) {
|
|||
std::vector<uint64_t> freq(total_samples, 0);
|
||||
|
||||
// create sampler with replacement = true
|
||||
WeightedRandomSamplerRT m_sampler(num_samples, weights, true);
|
||||
WeightedRandomSamplerRT m_sampler(weights, num_samples, true);
|
||||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
|
@ -234,7 +234,7 @@ TEST_F(MindDataTestWeightedRandomSampler, TestResetNoReplacement) {
|
|||
std::vector<uint64_t> freq(total_samples, 0);
|
||||
|
||||
// create sampler with replacement = true
|
||||
WeightedRandomSamplerRT m_sampler(num_samples, weights, false);
|
||||
WeightedRandomSamplerRT m_sampler(weights, num_samples, false);
|
||||
DummyRandomAccessOp dummyRandomAccessOp(total_samples);
|
||||
m_sampler.HandshakeRandomAccessOp(&dummyRandomAccessOp);
|
||||
|
||||
|
|
Loading…
Reference in New Issue