!4258 change binary to mindir

Merge pull request !4258 from leopz/fix_doc
This commit is contained in:
mindspore-ci-bot 2020-08-11 20:17:41 +08:00 committed by Gitee
commit 67f5b0e916
6 changed files with 20 additions and 16 deletions

View File

@ -68,7 +68,7 @@ using mindspore::abstract::AbstractTuplePtr;
const char IR_TYPE_ANF[] = "anf_ir";
const char IR_TYPE_ONNX[] = "onnx_ir";
const char IR_TYPE_BINARY[] = "binary_ir";
const char IR_TYPE_MINDIR[] = "mind_ir";
ExecutorPyPtr ExecutorPy::executor_ = nullptr;
std::mutex ExecutorPy::instance_lock_;
@ -222,7 +222,7 @@ py::bytes ExecutorPy::GetFuncGraphProto(const std::string &phase, const std::str
return proto_str;
}
if (ir_type == IR_TYPE_BINARY) {
if (ir_type == IR_TYPE_MINDIR) {
std::string proto_str = GetBinaryProtoString(fg_ptr);
if (proto_str.empty()) {
MS_LOG(EXCEPTION) << "Graph proto is empty.";

View File

@ -445,15 +445,17 @@ def export(network, *inputs, file_name, mean=127.5, std_dev=127.5, file_format='
file_name (str): File name of model to export.
mean (int): Input data mean. Default: 127.5.
std_dev (int, float): Input data variance. Default: 127.5.
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'BINARY' format for exported
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'MINDIR' format for exported
quantization aware model. Default: 'GEIR'.
- GEIR: Graph Engine Intermidiate Representation. An intermidiate representation format of
Ascend model.
- BINARY: Binary format for model. An intermidiate representation format for models.
- MINDIR: MindSpore Native Intermidiate Representation for Anf. An intermidiate representation format
for MindSpore models.
Recommended suffix for output file is '.mindir'.
"""
supported_device = ["Ascend", "GPU"]
supported_formats = ['GEIR', 'BINARY']
supported_formats = ['GEIR', 'MINDIR']
mean = validator.check_type("mean", mean, (int, float))
std_dev = validator.check_type("std_dev", std_dev, (int, float))

View File

@ -453,17 +453,19 @@ def export(net, *inputs, file_name, file_format='GEIR'):
net (Cell): MindSpore network.
inputs (Tensor): Inputs of the `net`.
file_name (str): File name of model to export.
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'BINARY' format for exported model.
file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'MINDIR' format for exported model.
- GEIR: Graph Engine Intermidiate Representation. An intermidiate representation format of
Ascend model.
- ONNX: Open Neural Network eXchange. An open format built to represent machine learning models.
- BINARY: Binary format for model. An intermidiate representation format for models.
- MINDIR: MindSpore Native Intermidiate Representation for Anf. An intermidiate representation format
for MindSpore models.
Recommended suffix for output file is '.mindir'.
"""
logger.info("exporting model file:%s format:%s.", file_name, file_format)
check_input_data(*inputs, data_class=Tensor)
supported_formats = ['GEIR', 'ONNX', 'BINARY']
supported_formats = ['GEIR', 'ONNX', 'MINDIR']
if file_format not in supported_formats:
raise ValueError(f'Illegal file format {file_format}, it must be one of {supported_formats}')
# switch network mode to infer when it is training
@ -485,10 +487,10 @@ def export(net, *inputs, file_name, file_format='GEIR'):
with open(file_name, 'wb') as f:
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
f.write(onnx_stream)
elif file_format == 'BINARY': # file_format is 'BINARY'
phase_name = 'export.binary'
elif file_format == 'MINDIR': # file_format is 'MINDIR'
phase_name = 'export.mindir'
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False)
onnx_stream = _executor._get_func_graph_proto(graph_id, 'binary_ir')
onnx_stream = _executor._get_func_graph_proto(graph_id, 'mind_ir')
with open(file_name, 'wb') as f:
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
f.write(onnx_stream)

View File

@ -36,7 +36,7 @@ y = np.ones(4).astype(np.float32)
def export_net():
add = Net()
output = add(Tensor(x), Tensor(y))
export(add, Tensor(x), Tensor(y), file_name='tensor_add.pb', file_format='BINARY')
export(add, Tensor(x), Tensor(y), file_name='tensor_add.pb', file_format='MINDIR')
print(x)
print(y)
print(output.asnumpy())

View File

@ -62,14 +62,14 @@ def export_add_model():
net = AddNet()
x = np.ones(4).astype(np.float32)
y = np.ones(4).astype(np.float32)
export(net, Tensor(x), Tensor(y), file_name='add.pb', file_format='BINARY')
export(net, Tensor(x), Tensor(y), file_name='add.pb', file_format='MINDIR')
def export_bert_model():
net = BertModel(bert_net_cfg, False)
input_ids = np.random.randint(0, 1000, size=(2, 32), dtype=np.int32)
segment_ids = np.zeros((2, 32), dtype=np.int32)
input_mask = np.zeros((2, 32), dtype=np.int32)
export(net, Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask), file_name='bert.pb', file_format='BINARY')
export(net, Tensor(input_ids), Tensor(segment_ids), Tensor(input_mask), file_name='bert.pb', file_format='MINDIR')
if __name__ == '__main__':
export_add_model()

View File

@ -322,10 +322,10 @@ def test_export():
@non_graph_engine
def test_binary_export():
def test_mindir_export():
net = MYNET()
input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32))
export(net, input_data, file_name="./me_binary_export.pb", file_format="BINARY")
export(net, input_data, file_name="./me_binary_export.mindir", file_format="MINDIR")
class PrintNet(nn.Cell):