forked from mindspore-Ecosystem/mindspore
commit
66ba9e952b
|
@ -647,4 +647,5 @@ Parameter操作函数
|
|||
mindspore.ops.arange
|
||||
mindspore.ops.core
|
||||
mindspore.ops.count_nonzero
|
||||
mindspore.ops.iou
|
||||
|
||||
|
|
|
@ -5,22 +5,4 @@
|
|||
|
||||
Dropout是一种正则化手段,通过在训练中以 :math:`1 - keep\_prob` 的概率随机将神经元输出设置为0,起到减少神经元相关性的作用,避免过拟合。
|
||||
|
||||
参数:
|
||||
- **keep_prob** (float) - 输入神经元保留概率,数值范围在0到1之间。例如,keep_prob=0.9,删除10%的神经元。默认值:0.5。
|
||||
- **Seed0** (int) - 算子层的随机种子,用于生成随机数。默认值:0。
|
||||
- **Seed1** (int) - 全局的随机种子,和算子层的随机种子共同决定最终生成的随机数。默认值:0。
|
||||
|
||||
输入:
|
||||
- **x** (Tensor) - Dropout的输入,任意维度的Tensor,其数据类型为float16或float32。
|
||||
|
||||
输出:
|
||||
- **output** (Tensor) - shape和数据类型与 `x` 相同。
|
||||
- **mask** (Tensor) - shape与 `x` 相同。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `keep_prob` 不是float。
|
||||
- **TypeError** - `Seed0` 或 `Seed1` 不是int。
|
||||
- **TypeError** - `x` 的数据类型既不是float16也不是float32。
|
||||
- **TypeError** - `x` 不是Tensor。
|
||||
|
||||
更多细节请参考 :func:`mindspore.ops.dropout` 。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.relu
|
||||
==================
|
||||
|
||||
.. py:function:: mindspore.ops.relu(input_x)
|
||||
.. py:function:: mindspore.ops.relu(x)
|
||||
|
||||
线性修正单元激活函数(Rectified Linear Unit)。
|
||||
|
||||
|
@ -14,12 +14,12 @@ mindspore.ops.relu
|
|||
一般来说,与 `ReLUV2` 相比,此算子更常用。且 `ReLUV2` 会多输出一个掩码。
|
||||
|
||||
参数:
|
||||
- **input_x** (Tensor) - relu的输入,shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度,
|
||||
- **x** (Tensor) - relu的输入,shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度,
|
||||
其数据类型为 `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_。
|
||||
|
||||
返回:
|
||||
Tensor,数据类型和shape与 `input_x` 相同。
|
||||
Tensor,数据类型和shape与 `x` 相同。
|
||||
|
||||
异常:
|
||||
- **TypeError** - `input_x` 的数据类型不是数值型。
|
||||
- **TypeError** - `input_x` 不是Tensor。
|
||||
- **TypeError** - `x` 的数据类型不是数值型。
|
||||
- **TypeError** - `x` 不是Tensor。
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
mindspore.ops.relu6
|
||||
====================
|
||||
|
||||
.. py:function:: mindspore.ops.relu6(input_x)
|
||||
.. py:function:: mindspore.ops.relu6(x)
|
||||
|
||||
计算输入Tensor的ReLU(修正线性单元),其上限为6。
|
||||
|
||||
|
@ -11,11 +11,11 @@
|
|||
返回 :math:`\min(\max(0,x), 6)` 元素的值。
|
||||
|
||||
参数:
|
||||
- **input_x** (Tensor) - relu6的输入,shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度,数据类型为float16或float32。
|
||||
- **x** (Tensor) - relu6的输入,shape: :math:`(N, *)` ,其中 :math:`*` 表示任意数量的附加维度,数据类型为float16或float32。
|
||||
|
||||
返回:
|
||||
Tensor,数据类型和shape与 `input_x` 相同。
|
||||
Tensor,数据类型和shape与 `x` 相同。
|
||||
|
||||
异常:
|
||||
- **TypeError** - 如果 `input_x` 的数据类型既不是float16也不是float32。
|
||||
- **TypeError** - 如果 `input_x` 不是Tensor。
|
||||
- **TypeError** - 如果 `x` 的数据类型既不是float16也不是float32。
|
||||
- **TypeError** - 如果 `x` 不是Tensor。
|
||||
|
|
|
@ -95,6 +95,7 @@ Activation Functions
|
|||
:template: classtemplate.rst
|
||||
|
||||
mindspore.ops.celu
|
||||
mindspore.ops.dropout
|
||||
mindspore.ops.fast_gelu
|
||||
mindspore.ops.gumbel_softmax
|
||||
mindspore.ops.hardshrink
|
||||
|
@ -643,8 +644,6 @@ Other Functions
|
|||
- Determine if two strings are equal.
|
||||
* - mindspore.ops.typeof
|
||||
- Get type of object.
|
||||
* - mindspore.ops.iou
|
||||
- Computes the intersection over union (IOU) or the intersection over foreground (IOF) for boxes.-
|
||||
|
||||
.. msplatformautosummary::
|
||||
:toctree: ops
|
||||
|
@ -652,6 +651,6 @@ Other Functions
|
|||
:template: classtemplate.rst
|
||||
|
||||
mindspore.ops.arange
|
||||
mindspore.ops.batch_dot
|
||||
mindspore.ops.core
|
||||
mindspore.ops.count_nonzero
|
||||
mindspore.ops.iou
|
||||
|
|
|
@ -5829,13 +5829,13 @@ def iou(anchor_boxes, gt_boxes, mode='iou'):
|
|||
and width are scaled by 0.2 internally.
|
||||
|
||||
Args:
|
||||
- **anchor_boxes** (Tensor) - Anchor boxes, tensor of shape (N, 4). "N" indicates the number of anchor boxes,
|
||||
and the value "4" refers to "x0", "y0", "x1", and "y1". Data type must be float16 or float32.
|
||||
- **gt_boxes** (Tensor) - Ground truth boxes, tensor of shape (M, 4). "M" indicates the number of ground
|
||||
truth boxes, and the value "4" refers to "x0", "y0", "x1", and "y1". Data type must be float16 or float32.
|
||||
- **mode** (string): The mode is used to specify the calculation method,
|
||||
now supporting 'iou' (intersection over union) or 'iof' (intersection over foreground) mode.
|
||||
Default: 'iou'.
|
||||
anchor_boxes (Tensor): Anchor boxes, tensor of shape (N, 4). "N" indicates the number of anchor boxes,
|
||||
and the value "4" refers to "x0", "y0", "x1", and "y1". Data type must be float16 or float32.
|
||||
gt_boxes (Tensor): Ground truth boxes, tensor of shape (M, 4). "M" indicates the number of ground
|
||||
truth boxes, and the value "4" refers to "x0", "y0", "x1", and "y1". Data type must be float16 or float32.
|
||||
mode (string): The mode is used to specify the calculation method,
|
||||
now supporting 'iou' (intersection over union) or 'iof' (intersection over foreground) mode.
|
||||
Default: 'iou'.
|
||||
|
||||
Returns:
|
||||
Tensor, the 'iou' values, tensor of shape (M, N), with the same data type as `anchor_boxes`.
|
||||
|
|
|
@ -1614,11 +1614,11 @@ def relu(x):
|
|||
`number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.
|
||||
|
||||
Returns:
|
||||
Tensor of shape :math:`(N, *)`, with the same dtype and shape as the `input_x`.
|
||||
Tensor of shape :math:`(N, *)`, with the same dtype and shape as the `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If dtype of `input_x` is not a number.
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
TypeError: If dtype of `x` is not a number.
|
||||
TypeError: If `x` is not a Tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -1645,15 +1645,15 @@ def relu6(x):
|
|||
It returns :math:`\min(\max(0,x), 6)` element-wise.
|
||||
|
||||
Args:
|
||||
x(Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
|
||||
x (Tensor): Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
|
||||
additional dimensions, with float16 or float32 data type.
|
||||
|
||||
Returns:
|
||||
Tensor, with the same dtype and shape as the `input_x`.
|
||||
Tensor, with the same dtype and shape as the `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
TypeError: If dtype of `x` is neither float16 nor float32.
|
||||
TypeError: If `x` is not a Tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -2903,19 +2903,19 @@ def batch_norm(input_x, running_mean, running_var, weight, bias, training=False,
|
|||
Args:
|
||||
If `training` is False, `scale`, `bias`, `mean` and `variance` are Tensors.
|
||||
|
||||
input_x (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
|
||||
running_mean (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
running_var (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
weight (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type.
|
||||
bias (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
input_x (Tensor): Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
|
||||
running_mean (Tensor): Tensor of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
running_var (Tensor): Tensor of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
weight (Tensor): Tensor of shape :math:`(C,)`, with float16 or float32 data type.
|
||||
bias (Tensor): Tensor of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
|
||||
If `training` is True, `scale`, `bias`, `mean` and `variance` are Parameters.
|
||||
|
||||
input_x (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
|
||||
running_mean (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
running_var (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
weight (Parameter) - Parameter of shape :math:`(C,)`, with float16 or float32 data type.
|
||||
bias (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
input_x (Tensor): Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
|
||||
running_mean (Parameter): Parameter of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
running_var (Parameter): Parameter of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
weight (Parameter): Parameter of shape :math:`(C,)`, with float16 or float32 data type.
|
||||
bias (Parameter): Parameter of shape :math:`(C,)`, has the same data type with `scale`.
|
||||
|
||||
training (bool): If `training` is True, `mean` and `variance` are computed during training.
|
||||
If `training` is False, they're loaded from checkpoint during inference. Default: False.
|
||||
|
@ -2925,7 +2925,7 @@ def batch_norm(input_x, running_mean, running_var, weight, bias, training=False,
|
|||
eps (float): A small value added for numerical stability. Default: 1e-5.
|
||||
|
||||
Returns:
|
||||
output_x (Tensor) - The same type and shape as the input_x. The shape is :math:`(N, C)`.
|
||||
output_x (Tensor), The same type and shape as the input_x. The shape is :math:`(N, C)`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `training` is not a bool.
|
||||
|
|
Loading…
Reference in New Issue