!41937 modify format

Merge pull request !41937 from 俞涵/code_docs_0819
This commit is contained in:
i-robot 2022-09-14 06:35:45 +00:00 committed by Gitee
commit 65ea230048
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
9 changed files with 12 additions and 18 deletions

View File

@ -28,8 +28,8 @@
- **drop_remainder** (bool, 可选) - 当最后一个批处理数据包含的数据条目小于 `batch_size`是否将该批处理丢弃不传递给下一个操作。默认值False不丢弃。
- **num_parallel_workers** (int, 可选) - 指定 `batch` 操作的并发进程数/线程数(由参数 `python_multiprocessing` 决定当前为多进程模式或多线程模式)。
默认值None使用mindspore.dataset.config中配置的线程数。
- **per_batch_map** (Callable[[List[numpy.ndarray], ..., List[numpy.ndarray], BatchInfo], (List[numpy.ndarray],
..., List[numpy.ndarray])], 可选) - 可调用对象,以(list[numpy.ndarray], ..., list[numpy.ndarray], BatchInfo)作为输入参数,
- **per_batch_map** (Callable[[List[numpy.ndarray], ..., List[numpy.ndarray], BatchInfo], (List[numpy.ndarray],..., List[numpy.ndarray])], 可选) - 可调用对象,
以(list[numpy.ndarray], ..., list[numpy.ndarray], BatchInfo)作为输入参数,
处理后返回(list[numpy.ndarray], list[numpy.ndarray],...)作为新的数据列。输入参数中每个list[numpy.ndarray]代表给定数据列中的一批numpy.ndarray
list[numpy.ndarray]的个数应与 `input_columns` 中传入列名的数量相匹配,在返回的(list[numpy.ndarray], list[numpy.ndarray], ...)中,
list[numpy.ndarray]的个数应与输入相同,如果输出列数与输入列数不一致,则需要指定 `output_columns`。该可调用对象的最后一个输入参数始终是BatchInfo

View File

@ -91,6 +91,3 @@ mindspore.nn.Adam
- **ValueError** - `loss_scale``eps` 小于或等于0。
- **ValueError** - `beta1``beta2` 不在0.0,1.0)范围内。
- **ValueError** - `weight_decay` 小于0。
.. include:: mindspore.nn.optim_target_unique_for_sparse.rst

View File

@ -77,5 +77,3 @@ mindspore.nn.AdamWeightDecay
- **ValueError** - `eps` 小于等于0。
- **ValueError** - `beta1``beta2` 不在0.0,1.0)范围内。
- **ValueError** - `weight_decay` 小于0。
.. include:: mindspore.nn.optim_target_unique_for_sparse.rst

View File

@ -69,6 +69,3 @@ mindspore.nn.FTRL
- **ValueError** - `lr_power` 大于0。
- **ValueError** - `loss_scale` 小于等于0。
- **ValueError** - `initial_accum``l1``l2` 小于0。
.. include:: mindspore.nn.optim_target_unique_for_sparse.rst

View File

@ -66,5 +66,3 @@ mindspore.nn.LazyAdam
- **ValueError** - `loss_scale``eps` 小于或等于0。
- **ValueError** - `beta1``beta2` 不在0.0,1.0)范围内。
- **ValueError** - `weight_decay` 小于0。
.. include:: mindspore.nn.optim_target_unique_for_sparse.rst

View File

@ -62,6 +62,3 @@ mindspore.nn.ProximalAdagrad
- **TypeError** - `weight_decay` 不是float或int。
- **ValueError** - `loss_scale` 小于或等于0。
- **ValueError** - `accum``l1``l2``weight_decay` 小于0。
.. include:: mindspore.nn.optim_target_unique_for_sparse.rst

View File

@ -10,6 +10,13 @@
:exclude-members: infer_value, infer_shape, infer_dtype, construct
:members:
{% elif fullname in ["mindspore.nn.Adam","mindspore.nn.AdamWeightDecay","mindspore.nn.FTRL","mindspore.nn.LazyAdam","mindspore.nn.ProximalAdagrad"] %}
{{ fullname | underline }}
.. autoclass:: {{ name }}
:exclude-members: infer_value, infer_shape, infer_dtype, target
:members:
{% elif fullname=="mindspore.Tensor" %}
{{ fullname | underline }}

View File

@ -5525,7 +5525,7 @@ class Tensor(Tensor_):
The first input tensor must be not less than `3` and the second input must be not less than `2`.
Args:
mat2 (Tensor) - The tensor to be multiplied. The shape of the tensor is :math:`(*B, C, M)`.
mat2 (Tensor): The tensor to be multiplied. The shape of the tensor is :math:`(*B, C, M)`.
Outputs:
Tensor, the shape of the output tensor is :math:`(*B, N, M)`.

View File

@ -5190,10 +5190,10 @@ def bmm(input_x, mat2):
The first input tensor must be not less than `3` and the second input must be not less than `2`.
Args:
input_x (Tensor) - The first tensor to be multiplied. The shape of the tensor is :math:`(*B, N, C)`,
input_x (Tensor): The first tensor to be multiplied. The shape of the tensor is :math:`(*B, N, C)`,
where :math:`*B` represents the batch size which can be multidimensional, :math:`N` and :math:`C` are the
size of the last two dimensions.
mat2 (Tensor) - The second tensor to be multiplied. The shape of the tensor is :math:`(*B, C, M)`.
mat2 (Tensor): The second tensor to be multiplied. The shape of the tensor is :math:`(*B, C, M)`.
Outputs:
Tensor, the shape of the output tensor is :math:`(*B, N, M)`.