remove global grad ops

This commit is contained in:
panyifeng 2020-08-24 10:22:10 +08:00
parent eb2437d517
commit 637e812347
96 changed files with 518 additions and 268 deletions

View File

@ -21,7 +21,6 @@ Pre-defined combination of operators.
from .base import GradOperation, HyperMap, Map, MultitypeFuncGraph, add_flags, \
grad, grad_all, grad_all_with_sens, grad_by_list, grad_by_list_with_sens, grad_with_sens, \
core, env_get, tail, zip_operation
from .clip_ops import clip_by_value
from .multitype_ops.add_impl import hyper_add
@ -31,12 +30,6 @@ from .random_ops import set_seed, normal, uniform, gamma, poisson, multinomial
__all__ = [
'grad',
'grad_by_list_with_sens',
'grad_all',
'grad_by_list',
'grad_all_with_sens',
'grad_with_sens',
'env_get',
'core',
'add_flags',

View File

@ -163,14 +163,6 @@ class GradOperation(GradOperation_):
return self.grad_fn
grad = GradOperation('grad')
grad_all = GradOperation('get_all', get_all=True)
grad_by_list = GradOperation('get_by_list', get_by_list=True)
grad_with_sens = GradOperation('grad_with_sens', sens_param=True)
grad_all_with_sens = GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
grad_by_list_with_sens = GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True)
class MultitypeFuncGraph(MultitypeFuncGraph_):
"""
Generate multiply graph.

View File

@ -268,6 +268,7 @@ class HookBackward(PrimitiveWithInfer):
>>> def hook_fn(grad_out):
>>> print(grad_out)
>>>
>>> grad_all = GradOperation('get_all', get_all=True)
>>> hook = P.HookBackward(hook_fn)
>>>
>>> def hook_test(x, y):
@ -277,7 +278,7 @@ class HookBackward(PrimitiveWithInfer):
>>> return z
>>>
>>> def backward(x, y):
>>> return C.grad_all(hook_test)(x, y)
>>> return grad_all(hook_test)(x, y)
>>>
>>> backward(1, 2)
"""

View File

@ -23,6 +23,9 @@ from mindspore import Tensor
from mindspore.common.api import _executor
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
class InputBackward(nn.Cell):
""" InputBackward definition """
@ -30,7 +33,7 @@ class InputBackward(nn.Cell):
super(InputBackward, self).__init__()
self.network = network
self.network.set_train()
self.grad = C.grad_all_with_sens
self.grad = grad_all_with_sens
self.c1 = c1
self.c2 = c2

View File

@ -26,6 +26,9 @@ from mindspore.common.api import _executor
context.set_context(mode=context.GRAPH_MODE)
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
batch_size = 1
channel = 1
height = 32
@ -38,7 +41,7 @@ class LeNetGrad(nn.Cell):
def __init__(self, network):
super(LeNetGrad, self).__init__()
self.grad_op = C.grad_all_with_sens
self.grad_op = grad_all_with_sens
self.network = network
def construct(self, x, sens):

View File

@ -28,6 +28,10 @@ from mindspore.ops import operations as P
# context.set_context(save_graphs=True)
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
grad_all = C.GradOperation('get_all', get_all=True)
def test_while_forward():
class MyWhileNet(nn.Cell):
def __init__(self):
@ -70,7 +74,7 @@ def test_while_grad():
self.net = net
def construct(self, *inputs):
return C.grad_all(self.net)(*inputs)
return grad_all(self.net)(*inputs)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -157,7 +161,7 @@ def test_while_with_param_grad():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -222,7 +226,7 @@ def test_while_opt_endless():
self.net = net
def construct(self, *inputs):
return C.grad_all(self.net)(*inputs)
return grad_all(self.net)(*inputs)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -285,7 +289,7 @@ def test_while_with_param_grad_with_const_branch():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -325,7 +329,7 @@ def test_for_while_with_param_grad_with_const_branch():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -362,7 +366,7 @@ def test_for_while_with_param_grad_basic():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -399,7 +403,7 @@ def test_for_while_with_param_grad_normal():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -433,7 +437,7 @@ def test_while_with_param_basic_grad():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -467,7 +471,7 @@ def test_while_with_param_basic_grad_mul():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -502,7 +506,7 @@ def test_while_with_param_basic_grad_two():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -538,7 +542,7 @@ def test_while_with_param_basic_grad_three():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -575,7 +579,7 @@ def test_while_if_with_param_grad():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -608,7 +612,7 @@ def test_while_with_param_grad_not_enter_while():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, a, b, c):
return C.grad_by_list(self.net, self.weights)(a, b, c)
return grad_by_list(self.net, self.weights)(a, b, c)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
while_net = MyWhileNet()
@ -670,7 +674,7 @@ def test_with_param_if_by_if_grad_inputs():
self.net = net
def construct(self, *inputs):
return C.grad_all(self.net)(*inputs)
return grad_all(self.net)(*inputs)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
if_net = MyIfByIfNet()
@ -704,7 +708,7 @@ def test_with_param_if_by_if_grad_parameter():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, *inputs):
return C.grad_by_list(self.net, self.weights)(*inputs)
return grad_by_list(self.net, self.weights)(*inputs)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
if_net = MyIfByIfNet()
@ -736,7 +740,7 @@ def test_with_param_if_by_if_grad_param_excute_null():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, *inputs):
return C.grad_by_list(self.net, self.weights)(*inputs)
return grad_by_list(self.net, self.weights)(*inputs)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
if_net = MyIfByIfNet()
@ -770,7 +774,7 @@ def test_if_by_if_return_inside_grad():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, *inputs):
return C.grad_by_list(self.net, self.weights)(*inputs)
return grad_by_list(self.net, self.weights)(*inputs)
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
if_net = MyIfByIfNet()

View File

@ -25,12 +25,15 @@ from mindspore.common.api import _executor
context.set_context(mode=context.GRAPH_MODE)
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
class MeanAggregatorGrad(nn.Cell):
"""Backward of MeanAggregator"""
def __init__(self, network):
super(MeanAggregatorGrad, self).__init__()
self.grad_op = C.grad_all_with_sens
self.grad_op = grad_all_with_sens
self.network = network
def construct(self, x, sens):

View File

@ -28,6 +28,10 @@ from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad_all = C.GradOperation('get_all', get_all=True)
class MulAdd(nn.Cell):
def construct(self, x, y):
return 2 * x + y
@ -43,7 +47,7 @@ def test_grad_mul_add():
mul_add = MulAdd()
x = Tensor(1, dtype=ms.int32)
y = Tensor(2, dtype=ms.int32)
assert C.grad_all(mul_add)(x, y) == (2, 4)
assert grad_all(mul_add)(x, y) == (2, 4)
class InlineMulADD(nn.Cell):
@ -62,7 +66,7 @@ def test_grad_inline_mul_add():
inline_mul_add = InlineMulADD()
x = Tensor(1, dtype=ms.int32)
y = Tensor(2, dtype=ms.int32)
assert C.grad_all(inline_mul_add)(x, y) == (3, 6)
assert grad_all(inline_mul_add)(x, y) == (3, 6)
class WithParameter(nn.Cell):
@ -84,7 +88,7 @@ class WithParameter(nn.Cell):
def test_with_param():
with_param = WithParameter()
with pytest.raises(RuntimeError):
C.grad_all(with_param)(1, 2)
grad_all(with_param)(1, 2)
class WithNoBprop(nn.Cell):
@ -98,7 +102,7 @@ def test_with_no_bprop():
with_no_bprop = WithNoBprop()
x = Tensor(1, dtype=ms.int32)
y = Tensor(2, dtype=ms.int32)
assert C.grad_all(with_no_bprop)(x, y) == (2, 1)
assert grad_all(with_no_bprop)(x, y) == (2, 1)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@ -118,10 +122,10 @@ def test_grad_in_bprop_1():
self.f = GradInBprop_1()
def construct(self, x, y):
return self.f(x, y), C.grad_all(self.f)(x, y)
return self.f(x, y), grad_all(self.f)(x, y)
def bprop(self, x, y, out, dout):
grads = C.grad_all(self.f)(x, y)
grads = grad_all(self.f)(x, y)
return out[1][0], grads[1]
class GradInBprop_3(nn.Cell):
@ -133,8 +137,8 @@ def test_grad_in_bprop_1():
return self.f(x, y)
grad_in_bprop = GradInBprop_3()
grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.zeros([2, 2]).astype(np.float32)).all()
@ -159,10 +163,10 @@ def test_grad_in_bprop_2():
self.f = GradInBprop_1()
def construct(self, x, y):
return self.f(x, y), C.grad_all(self.f)(x, y)
return self.f(x, y), grad_all(self.f)(x, y)
def bprop(self, x, y, out, dout):
grads = C.grad_all(self.f)(x, y)
grads = grad_all(self.f)(x, y)
return out[1][0], grads[1]
class GradInBprop_3(nn.Cell):
@ -174,8 +178,8 @@ def test_grad_in_bprop_2():
return self.f(x, y)
grad_in_bprop = GradInBprop_3()
grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.array([[2, 2], [2, 2]]).astype(np.float32)).all()
@ -197,10 +201,10 @@ def test_grad_in_bprop_3():
self.f = GradInBprop_1()
def construct(self, x, y):
return self.f(x, y), C.grad_all(self.f)(x, y)
return self.f(x, y), grad_all(self.f)(x, y)
def bprop(self, x, y, out, dout):
grads = C.grad_all(self.f)(x, y)
grads = grad_all(self.f)(x, y)
return out[1][0], grads[1]
class GradInBprop_3(nn.Cell):
@ -215,8 +219,8 @@ def test_grad_in_bprop_3():
return x + y + y + out[0], x + x + y + y + dout[0]
grad_in_bprop = GradInBprop_3()
grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
Tensor(np.ones([2, 2]).astype(np.float32)))
assert (grads[0].asnumpy() == np.array([[4, 4], [4, 4]]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.array([[5, 5], [5, 5]]).astype(np.float32)).all()
@ -238,7 +242,7 @@ class OneInputBprop(nn.Cell):
def test_grad_one_input_bprop():
net = OneInputBprop()
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
grad = C.grad_all(net)(input1)
grad = grad_all(net)(input1)
assert (grad[0].asnumpy() == np.array([5, 5]).astype(np.float32)).all()
@ -253,10 +257,10 @@ class InlineBpropTwoInput(nn.Cell):
self.f = TwoInput()
def construct(self, x, y):
return self.f(x, y), C.grad_all(self.f)(x, y)
return self.f(x, y), grad_all(self.f)(x, y)
def bprop(self, x, y, out, dout):
grads = C.grad_all(self.f)(x, y)
grads = grad_all(self.f)(x, y)
return grads[0] * 2, grads[1] * 2
@pytest.mark.level0
@ -266,7 +270,7 @@ def test_grad_inline_bprop_two_input():
net = InlineBpropTwoInput()
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
input2 = Tensor(np.ones([2, 2]).astype(np.float32))
grads = C.grad_all(net)(input1, input2)
grads = grad_all(net)(input1, input2)
assert (grads[0].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
assert len(grads) == 2
@ -328,7 +332,7 @@ def test_grad_inline_bprop_multi_input():
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
input2 = Tensor(np.ones([2, 2]).astype(np.float32))
net.init_parameters_data()
grads = C.grad_all(net)(input1, input2)
grads = grad_all(net)(input1, input2)
assert (grads[0].asnumpy() == np.array([[12, 12], [12, 12]]).astype(np.float32)).all()
assert (grads[1].asnumpy() == np.array([[19, 19], [19, 19]]).astype(np.float32)).all()
assert len(grads) == 2
@ -378,7 +382,7 @@ def test_grad_mul_add_with_wrong_output_num():
context.set_context(check_bprop=True)
mul_add = MulAddWithWrongOutputNum()
with pytest.raises(TypeError):
C.grad_all(mul_add)(1, 2)
grad_all(mul_add)(1, 2)
class MulAddWithWrongOutputType(nn.Cell):
@ -395,7 +399,7 @@ def test_grad_mul_add_with_wrong_output_type():
context.set_context(check_bprop=True)
mul_add = MulAddWithWrongOutputType()
with pytest.raises(TypeError):
C.grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
class MulAddWithWrongOutputShape(nn.Cell):
@ -416,4 +420,4 @@ def test_grad_mul_add_with_wrong_output_shape():
context.set_context(check_bprop=True)
mul_add = MulAddWithWrongOutputShape()
with pytest.raises(TypeError):
C.grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
grad_all(mul_add)(1, Tensor(np.ones([2, 2])))

View File

@ -22,6 +22,10 @@ from mindspore import Tensor
from mindspore.ops import composite as C
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
grad_with_sens = C.GradOperation('grad_with_sens', sens_param=True)
class Net(nn.Cell):
"""Net definition"""
@ -52,6 +56,6 @@ def test_grad_net():
x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
sens = np.array([1.0, 1.0, 1.0]).astype(np.float32)
square = Net()
dx = C.grad_with_sens(square)(Tensor(x), Tensor(sens))
dx = grad_with_sens(square)(Tensor(x), Tensor(sens))
expect = np.array([2.0, 8.0, 18.0]).astype(np.float32)
assert (dx.asnumpy() == expect).all()

View File

@ -30,6 +30,9 @@ from mindspore.common.initializer import TruncatedNormal
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
grad_all = C.GradOperation('get_all', get_all=True)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
@ -121,9 +124,6 @@ class test_custom_cell_base():
class MulAdd(nn.Cell):
def __init__(self):
super(MulAdd, self).__init__()
def construct(self, x, y):
return 2 * x + y
@ -181,8 +181,8 @@ def test_pynative_custom_bprop_and_Cell_MulAdd():
custom_cell = test_custom_cell_base()
mul_add = custom_cell.test_custom_cell_function(MulAdd())
mul_add.bprop_debug = True
C.grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32))
assert C.grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32)) == \
grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32))
assert grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32)) == \
(Tensor(1.0, mstype.float32), Tensor(2.0, mstype.float32))
@ -194,5 +194,5 @@ def test_pynative_custom_bprop_and_Cell_Ms_Cell():
custom_cell = test_custom_cell_base()
ms_Cell = custom_cell.test_custom_cell_function(Ms_Cell())
ms_Cell.bprop_debug = True
assert C.grad_all(ms_Cell)(Tensor(1, mstype.float32)) == (Tensor(1.0, mstype.float32),)
assert grad_all(ms_Cell)(Tensor(1, mstype.float32)) == (Tensor(1.0, mstype.float32),)

View File

@ -29,6 +29,9 @@ from mindspore.ops import operations as P
np.random.seed(1)
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
@ -122,7 +125,7 @@ class GradWrap(nn.Cell):
def construct(self, x, label):
weights = self.weights
return C.grad_by_list(self.network, weights)(x, label)
return grad_by_list(self.network, weights)(x, label)
@pytest.mark.level0

View File

@ -40,6 +40,9 @@ np.random.seed(1)
ds.config.set_seed(1)
grad_by_list = CP.GradOperation('get_by_list', get_by_list=True)
def weight_variable(shape):
return initializer('XavierUniform', shape=shape, dtype=mstype.float32)
@ -389,7 +392,7 @@ class GradWrap(Cell):
def construct(self, x, label):
weights = self.weights
return CP.grad_by_list(self.network, weights)(x, label)
return grad_by_list(self.network, weights)(x, label)
@pytest.mark.level0

View File

@ -24,6 +24,9 @@ from mindspore.common.parameter import ParameterTuple
from mindspore.ops import composite as C
grad_by_list_with_sens = C.GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True)
def setup_module():
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
@ -319,9 +322,6 @@ def test_setitem_by_mixed_tensors_2():
class TensorGetItemByMixedTensorsTypeError(Cell):
def __init__(self):
super(TensorGetItemByMixedTensorsTypeError, self).__init__()
def construct(self, x, index_0, index_1):
ret = x[index_0, index_1, 0:3, ..., 0:5, [1, 2, 3, 4]]
return ret
@ -667,7 +667,7 @@ def test_setitem_grad():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, x, y, sens):
return C.grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
return grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
net = GradNet(Net())
x = Tensor(np.ones([4, 4, 5]).astype(np.float32), mstype.float32)
y = Tensor(np.array([3]).astype(np.float32), mstype.float32)
@ -676,27 +676,18 @@ def test_setitem_grad():
class TensorAssignWithSliceError1(Cell):
def __init__(self):
super(TensorAssignWithSliceError1, self).__init__()
def construct(self, a, b):
a[1:3:-1, ::] = b
return a
class TensorAssignWithSliceError2(Cell):
def __init__(self):
super(TensorAssignWithSliceError2, self).__init__()
def construct(self, a, b):
a[1:3:-1] = b
return a
class TensorAssignWithSlice2(Cell):
def __init__(self):
super(TensorAssignWithSlice2, self).__init__()
def construct(self, a, b, ck):
a[1:5] = b
a[3:4] = 5
@ -864,18 +855,12 @@ def test_tensor_assign_exception():
class TensorAssignWithTupleEllipsis2(Cell):
def __init__(self):
super(TensorAssignWithTupleEllipsis2, self).__init__()
def construct(self, a, b):
a[1:, ..., ::] = b
return a
class TensorAssignWithTupleEllipsis(Cell):
def __init__(self):
super(TensorAssignWithTupleEllipsis, self).__init__()
def construct(self, a, b):
a[:2, ...] = 1.0
a[1:, ...] = b
@ -883,9 +868,6 @@ class TensorAssignWithTupleEllipsis(Cell):
class TensorAssignWithEllipsis(Cell):
def __init__(self):
super(TensorAssignWithEllipsis, self).__init__()
def construct(self, a, b):
a[...] = 1
a[...] = b
@ -893,9 +875,6 @@ class TensorAssignWithEllipsis(Cell):
class TensorAssignWithInteger(Cell):
def __init__(self):
super(TensorAssignWithInteger, self).__init__()
def construct(self, a, b, ck):
a[1] = 1
a[0] = b
@ -904,9 +883,6 @@ class TensorAssignWithInteger(Cell):
class TensorAssignWithTupleInteger(Cell):
def __init__(self):
super(TensorAssignWithTupleInteger, self).__init__()
def construct(self, a, b, ck):
a[(1)] = 1
a[(1)] = b
@ -930,9 +906,6 @@ class TensorAssignWithBoolTensorIndex(Cell):
class TensorAssignWithBoolTensorIndexError(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndexError, self).__init__()
def construct(self, a, b, c, u_tensor):
a[b][c] = u_tensor
return a
@ -955,9 +928,6 @@ class TensorAssignWithBoolTensorIndex2(Cell):
class TensorAssignWithBoolTensorIndex2Error(Cell):
def __init__(self):
super(TensorAssignWithBoolTensorIndex2Error, self).__init__()
def construct(self, a, u_tensor):
a[a > 8][a > 5] = u_tensor
return a

View File

@ -31,6 +31,9 @@ from tests.mindspore_test_framework.pipeline.forward.compile_forward \
context.set_context(mode=context.GRAPH_MODE)
grad_all = C.GradOperation('get_all', get_all=True)
def test_list_equal():
class Net(nn.Cell):
def __init__(self, z: list):
@ -303,7 +306,7 @@ def test_grad_make_list():
self.net = net
def construct(self, *inputs):
return C.grad_all(self.net)(*inputs)
return grad_all(self.net)(*inputs)
while_net = MyWhileNet()
net = GradNet(while_net)

View File

@ -18,8 +18,11 @@ import numpy as np
from mindspore import Parameter, ParameterTuple, Tensor
from mindspore.nn import Cell
from mindspore.nn.optim import Optimizer
from mindspore.ops.composite import grad_by_list
from mindspore.ops.operations import BiasAdd, MatMul
import mindspore.ops.composite as C
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
class Net(Cell):

View File

@ -28,6 +28,9 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
grad_by_list_with_sens = C.GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True)
class DisOrderTest1(nn.Cell):
""" DisOrderTest1 definition """
@ -72,7 +75,7 @@ class GradNetWrap(nn.Cell):
self.weights = ParameterTuple(net.get_parameters())
def construct(self, x, sens):
return C.grad_by_list_with_sens(self.net, self.weights)(x, sens)
return grad_by_list_with_sens(self.net, self.weights)(x, sens)
test_case_ops = [

View File

@ -30,6 +30,11 @@ from mindspore.common import ms_function
context.set_context(mode=context.GRAPH_MODE)
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
grad_all = C.GradOperation('get_all', get_all=True)
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
def cond_data_test(x_init, y_init):
class Net(nn.Cell):
def __init__(self):
@ -401,9 +406,9 @@ def test_switch_layer():
index = Tensor(0, dtype=mstype.int32)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
def test_index_to_switch_layer():
@ -439,9 +444,9 @@ def test_index_to_switch_layer():
index = Tensor(0, dtype=mstype.int32)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
def test_parser_switch_layer_switch_in_bprop():
@ -477,7 +482,7 @@ def test_parser_switch_layer_switch_in_bprop():
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
grad = Tensor(np.random.randn(2, 2).astype(np.float32))
i = Tensor(1, mstype.int32)
grad_net = C.grad_all_with_sens(net)
grad_net = grad_all_with_sens(net)
grad_net(i, input1, grad)
@ -520,7 +525,7 @@ def test_parser_switch_layer_inputs_tuple():
input2 = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
i = Tensor(1, mstype.int32)
grad = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
back_net = C.grad_all_with_sens(net)
back_net = grad_all_with_sens(net)
back_out = back_net(i, input1, input2, grad)
@ -539,9 +544,9 @@ def test_switch_layer_with_single_prim():
index = Tensor(0, dtype=mstype.int32)
net = SwitchLayerCell()
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
def test_switch_layer_env_eliminate():

View File

@ -38,6 +38,8 @@ context.set_context(mode=context.GRAPH_MODE)
# W0613: unused-argument
# W0231: super-init-not-called
grad = C.GradOperation('grad')
def test_multiply():
""" test_multiply """
input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
@ -200,7 +202,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad(self.network)(x, y, b)
return grad(self.network)(x, y, b)
class MatMulNet(nn.Cell):
@ -236,7 +238,7 @@ class GradWrapSub(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad(self.network)(x, y)
return grad(self.network)(x, y)
class SubNet(nn.Cell):
@ -315,7 +317,7 @@ class GradWrapCumSum(nn.Cell):
self.network = network
def construct(self, input_):
return C.grad(self.network)(input_)
return grad(self.network)(input_)
class NetCumSum(nn.Cell):

View File

@ -34,6 +34,9 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
run_opt = C.MultitypeFuncGraph("run_opt")
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
@run_opt.register("Function", "Tensor", "Tensor", "Tensor",
"Tensor", "Tensor",
"Tensor")
@ -83,7 +86,7 @@ class TrainStepWrap(nn.Cell):
def construct(self, x, label):
weights = self.weights
grads = C.grad_by_list(self.network, weights)(x, label)
grads = grad_by_list(self.network, weights)(x, label)
return self.optimizer(grads)

View File

@ -45,6 +45,10 @@ def conv1x1(in_channels, out_channels, stride=1, padding=0):
kernel_size=1, stride=stride, padding=padding)
grad = C.GradOperation('grad')
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
class ResidualBlock(nn.Cell):
"""
residual Block
@ -169,7 +173,7 @@ class SoftMaxGrad(nn.Cell):
self.network = network
def construct(self, x):
return C.grad(self.network)(x)
return grad(self.network)(x)
class DropoutGrad(nn.Cell):
@ -180,7 +184,7 @@ class DropoutGrad(nn.Cell):
self.network = network
def construct(self, x):
return C.grad(self.network)(x)
return grad(self.network)(x)
class ScalarSummaryNet(nn.Cell):
@ -255,7 +259,7 @@ class Grad(nn.Cell):
self.network.set_train()
def construct(self, x, label):
return C.grad(self.network)(x, label)
return grad(self.network)(x, label)
class BatchnormNet(nn.Cell):
@ -418,7 +422,7 @@ class GradWrapUnfold(nn.Cell):
self.sens = Tensor(np.ones([1, 4, 2, 2], np.float32))
def construct(self, x):
return C.grad_all_with_sens(self.network)(x, self.sens)
return grad_all_with_sens(self.network)(x, self.sens)
class UnfoldNetValid(nn.Cell):

View File

@ -34,12 +34,16 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
class InputBackward(nn.Cell):
def __init__(self, network):
super(InputBackward, self).__init__()
self.network = network
self.network.set_train()
self.grad = C.grad_all_with_sens
self.grad = grad_all_with_sens
def construct(self, x1, x2, x3, sens):
return self.grad(self.network)(x1, x2, x3, sens)

View File

@ -24,6 +24,9 @@ from mindspore.parallel._utils import _set_has_initializer
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class AddRelu(nn.Cell):
def __init__(self, strategy0=None, strategy1=None):
super(AddRelu, self).__init__()
@ -52,7 +55,7 @@ class Grad(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
def compile_net(net, x, y):

View File

@ -24,6 +24,9 @@ from mindspore.parallel._utils import _set_has_initializer
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):
@ -516,7 +519,7 @@ def test_assign_sub():
self.network = network
def construct(self, x):
return C.grad_all(self.network)(x)
return grad_all(self.network)(x)
def compile_sub_net(net, x):
net.set_auto_parallel()

View File

@ -27,6 +27,9 @@ from mindspore.common.parameter import Parameter
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -44,7 +47,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x):
return C.grad_all(self.network)(x)
return grad_all(self.network)(x)
def compile_net(net, x):

View File

@ -23,6 +23,9 @@ from mindspore.ops import composite as C
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -45,7 +48,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x):
return C.grad_all(self.network)(x)
return grad_all(self.network)(x)
# model_parallel test

View File

@ -27,6 +27,9 @@ from tests.ut.python.ops.test_math_ops import VirtualLoss
context.set_context(mode=context.GRAPH_MODE)
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -44,7 +47,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b, phase):

View File

@ -25,6 +25,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x):
return C.grad_all(self.network)(x)
return grad_all(self.network)(x)
# model_parallel test

View File

@ -26,6 +26,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, z, w):
return C.grad_all(self.network)(x, y, z, w)
return grad_all(self.network)(x, y, z, w)
# model_parallel test

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, z):
return C.grad_all(self.network)(x, y, z)
return grad_all(self.network)(x, y, z)
# model_parallel test

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, z, w, a):
return C.grad_all(self.network)(x, y, z, w, a)
return grad_all(self.network)(x, y, z, w, a)
# model_parallel test

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, z, w, a, b, c):
return C.grad_all(self.network)(x, y, z, w, a, b, c)
return grad_all(self.network)(x, y, z, w, a, b, c)
# model_parallel test

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
# model_parallel test

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, z, w, b):
return C.grad_all(self.network)(x, y, z, w, b)
return grad_all(self.network)(x, y, z, w, b)
def compile_net(net, x, y, z, w, b):

View File

@ -25,6 +25,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def test_auto_parallel_l2normalize():

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
# model_parallel test

View File

@ -26,6 +26,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
# model_parallel test

View File

@ -30,6 +30,9 @@ from tests.ut.python.ops.test_math_ops import VirtualLoss
context.set_context(mode=context.GRAPH_MODE)
grad_all = C.GradOperation('get_all', get_all=True)
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
@ -68,7 +71,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def test_auto_parallel_arithmetic():

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, z, w, b):
return C.grad_all(self.network)(x, y, z, w, b)
return grad_all(self.network)(x, y, z, w, b)
# model_parallel test

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):

View File

@ -25,6 +25,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x):
return C.grad_all(self.network)(x)
return grad_all(self.network)(x)
def test_reshape_matmul():
@ -211,7 +214,7 @@ def test_reshape_auto_5():
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
class Net(nn.Cell):
def __init__(self):
@ -261,7 +264,7 @@ def test_reshape_auto_6():
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
class Net(nn.Cell):
def __init__(self):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):

View File

@ -23,6 +23,9 @@ from mindspore.ops import composite as C
from mindspore.ops import operations as P
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def test_softmax_cross_entropy_loss_auto_parallel():

View File

@ -23,6 +23,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x):
return C.grad_all(self.network)(x)
return grad_all(self.network)(x)
class CustomDense(nn.Cell):

View File

@ -25,6 +25,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
# core dump, step_auto_parallel should SetInputs for transpose axis

View File

@ -25,6 +25,9 @@ from mindspore.ops.operations.comm_ops import _VirtualDataset
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def bn_with_initialize(out_channels):

View File

@ -27,6 +27,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -44,7 +47,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
# model_parallel test

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
# model_parallel test

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, z, w, a):
return C.grad_all(self.network)(x, y, z, w, a)
return grad_all(self.network)(x, y, z, w, a)
# model_parallel test

View File

@ -26,6 +26,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
class CustomMatMul(nn.Cell):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, w1, w2):
return C.grad_all(self.network)(x, w1, w2)
return grad_all(self.network)(x, w1, w2)
class NetConv(nn.Cell):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
# model_parallel test

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def test_matmul_add():

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):

View File

@ -23,13 +23,16 @@ from mindspore.ops import composite as C
from mindspore.ops import operations as P
grad_all = C.GradOperation('get_all', get_all=True)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
def compile_net(net, x, y):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):

View File

@ -22,13 +22,17 @@ from mindspore.ops import composite as C
from mindspore import Tensor, context
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
class NetWithLoss(nn.Cell):
def __init__(self, network):

View File

@ -23,6 +23,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
class Net(nn.Cell):

View File

@ -25,6 +25,9 @@ from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE)
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
class NetWithLoss(nn.Cell):
def __init__(self, network, types, shapes, output_num, strategy3=None, strategy4=None, axis=-1):
super(NetWithLoss, self).__init__()
@ -49,7 +52,7 @@ class GradWrap(nn.Cell):
self.weights = ParameterTuple(network.trainable_params())
def construct(self):
return C.grad_by_list(self.network, self.weights)()
return grad_by_list(self.network, self.weights)()
def compile_net(net):

View File

@ -23,6 +23,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
class Net(nn.Cell):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
# model_parallel test

View File

@ -23,6 +23,9 @@ from mindspore.ops import composite as C
from mindspore.ops import operations as P
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network, strategy3):
super(NetWithLoss, self).__init__()
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, bias, label):
return C.grad_all(self.network)(x, y, bias, label)
return grad_all(self.network)(x, y, bias, label)
def test_linear():

View File

@ -25,6 +25,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def loop_config(size):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
# model_parallel test

View File

@ -26,6 +26,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
def compile_net(net, x, y):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b, z):
return C.grad_all(self.network)(x, y, b, z)
return grad_all(self.network)(x, y, b, z)
class Net1(nn.Cell):

View File

@ -29,6 +29,10 @@ from mindspore.train import Model, ParallelMode
from tests.dataset_mock import MindData
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
device_num = 16
device_id = 2
@ -233,7 +237,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, b):
return C.grad_all(self.network)(x, b)
return grad_all(self.network)(x, b)
def bn_with_initialize(out_channels):

View File

@ -23,6 +23,9 @@ from mindspore.ops import composite as C
from mindspore.ops import operations as P
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
class NetWithLoss(nn.Cell):
def __init__(self, network, strategy3):
super(NetWithLoss, self).__init__()
@ -42,7 +45,7 @@ class OneStepCell(nn.Cell):
def construct(self, data, label):
weights = self.weights
grads = C.grad_by_list(self.network, weights)(data, label)
grads = grad_by_list(self.network, weights)(data, label)
return grads

View File

@ -26,6 +26,9 @@ from mindspore.ops.operations.comm_ops import _VirtualDataset
context.set_context(mode=context.GRAPH_MODE)
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network, strategy3, strategy4, axis):
super(NetWithLoss, self).__init__()
@ -49,7 +52,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
class Net(nn.Cell):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
def compile_net(net, x, y):
@ -140,7 +143,7 @@ def test_prelu_parallel_success3():
self.network = network
def construct(self, x, y, w):
return C.grad_all(self.network)(x, y, w)
return grad_all(self.network)(x, y, w)
class Net(nn.Cell):
def __init__(self, strategy1, strategy2):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLossNoBias(nn.Cell):
def __init__(self, network):
super(NetWithLossNoBias, self).__init__()
@ -52,7 +55,7 @@ class GradWrapNoBias(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
class GradWrap(nn.Cell):
@ -61,7 +64,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net_no_bias(net, x, y):

View File

@ -36,6 +36,9 @@ context.set_context(mode=context.GRAPH_MODE)
context.reset_auto_parallel_context()
grad_all = C.GradOperation('get_all', get_all=True)
class Dataset(MindData):
def __init__(self, predict, label, length=3, input_num=2):
super(Dataset, self).__init__(size=length)
@ -194,7 +197,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x):
return C.grad_all(self.network)(x)
return grad_all(self.network)(x)
class ReshapeNet1(nn.Cell):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
class Net(nn.Cell):

View File

@ -24,13 +24,16 @@ from mindspore.ops import functional as F
from mindspore.ops import operations as P
grad_all = C.GradOperation('get_all', get_all=True)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
def test_sum_as_loss():

View File

@ -23,6 +23,9 @@ from mindspore.ops import composite as C
from mindspore.ops import operations as P
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network, strategy3=None):
super(NetWithLoss, self).__init__()
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):

View File

@ -26,13 +26,16 @@ from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, Adam
grad_all = C.GradOperation('get_all', get_all=True)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x):
return C.grad_all(self.network)(x)
return grad_all(self.network)(x)
def test_bprop_with_sparse_feature_allreduce():
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="hybrid_parallel")

View File

@ -25,6 +25,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
class Net(nn.Cell):

View File

@ -24,13 +24,17 @@ from mindspore.ops import composite as C
from mindspore.ops import operations as P
grad_all = C.GradOperation('get_all', get_all=True)
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y, b, sens):
return C.grad_all_with_sens(self.network)(x, y, b, sens)
return grad_all_with_sens(self.network)(x, y, b, sens)
class GradWrap2(nn.Cell):
@ -41,7 +45,7 @@ class GradWrap2(nn.Cell):
def construct(self, x, y, b):
loss = self.network(x, y, b)
sens = P.Fill()(mstype.float32, P.Shape()(loss), 1.0)
return C.grad_all_with_sens(self.network)(x, y, b, sens)
return grad_all_with_sens(self.network)(x, y, b, sens)
class GradWrap3(nn.Cell):
@ -50,7 +54,7 @@ class GradWrap3(nn.Cell):
self.network = network
def construct(self, x, y, bias):
return C.grad_all(self.network)(x, y, bias)
return grad_all(self.network)(x, y, bias)
class GradWrap4(nn.Cell):
def __init__(self, network):
@ -58,7 +62,7 @@ class GradWrap4(nn.Cell):
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
def compile_net(net, x, y, b):
net.set_auto_parallel()

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b, a):
return C.grad_all(self.network)(x, y, b, a)
return grad_all(self.network)(x, y, b, a)
def test_two_matmul():

View File

@ -25,6 +25,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
# model_parallel test
def test_six_matmul_save():
class NetWithLoss(nn.Cell):
@ -43,7 +46,7 @@ def test_six_matmul_save():
self.network = network
def construct(self, x1, x6):
return C.grad_all(self.network)(x1, x6)
return grad_all(self.network)(x1, x6)
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6):
@ -105,7 +108,7 @@ def test_six_matmul_load():
self.network = network
def construct(self, x1, x6, x7):
return C.grad_all(self.network)(x1, x6, x7)
return grad_all(self.network)(x1, x6, x7)
class Net(nn.Cell):
def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6, strategy7):
@ -167,7 +170,7 @@ def test_six_matmul_save_auto():
self.network = network
def construct(self, x1, x6):
return C.grad_all(self.network)(x1, x6)
return grad_all(self.network)(x1, x6)
class Net(nn.Cell):
def __init__(self):
@ -223,7 +226,7 @@ def test_six_matmul_load_auto():
self.network = network
def construct(self, x1, x6, x7):
return C.grad_all(self.network)(x1, x6, x7)
return grad_all(self.network)(x1, x6, x7)
class Net(nn.Cell):
def __init__(self, strategy1, strategy3, strategy4, strategy5):

View File

@ -23,13 +23,16 @@ from mindspore.ops import composite as C
from mindspore.ops import operations as P
grad_all = C.GradOperation('get_all', get_all=True)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x, y):
return C.grad_all(self.network)(x, y)
return grad_all(self.network)(x, y)
def compile_net(net, x, y):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
def compile_net(net, x, y, b):

View File

@ -23,6 +23,9 @@ from mindspore.ops import composite as C
from mindspore.ops import operations as P
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
class NetWithLoss(nn.Cell):
def __init__(self, network, strategy3):
super(NetWithLoss, self).__init__()
@ -42,7 +45,7 @@ class OneStepCell(nn.Cell):
def construct(self, data, label):
weights = self.weights
grads = C.grad_by_list(self.network, weights)(data, label)
grads = grad_by_list(self.network, weights)(data, label)
return grads

View File

@ -26,6 +26,9 @@ from mindspore.ops.operations.comm_ops import _VirtualDataset
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation('get_all', get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
self.network = network
def construct(self, x, y, b):
return C.grad_all(self.network)(x, y, b)
return grad_all(self.network)(x, y, b)
# model_parallel test

View File

@ -23,6 +23,10 @@ from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
grad_all = C.GradOperation('get_all', get_all=True)
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
def test_parser_three_default_mixed_args_subnet():
class SubNetDefaultMixedArgs(Cell):
def __init__(self):
@ -216,7 +220,7 @@ def test_net_vargs_expand():
super(InputBackward, self).__init__()
self.network = network
self.network.set_train()
self.grad = C.grad_all_with_sens
self.grad = grad_all_with_sens
self.c1 = c1
self.c2 = c2

View File

@ -25,6 +25,13 @@ from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
grad_by_list_with_sens = C.GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True)
grad_all = C.GradOperation('get_all', get_all=True)
grad_with_sens = C.GradOperation('grad_with_sens', sens_param=True)
def test_net_vargs_expand():
class AddNet(Cell):
def __init__(self):
@ -39,7 +46,7 @@ def test_net_vargs_expand():
y = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
sens = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
net = AddNet()
_ = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens)
_ = grad_all_with_sens(net, net.trainable_params())(x, y, sens)
class VarNet(Cell):
@ -104,7 +111,7 @@ def test_all_var_args_grad_with_sens():
self.net = net
def construct(self, *inputs):
return C.grad_by_list_with_sens(self.net, self.weights)(*inputs)
return grad_by_list_with_sens(self.net, self.weights)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -122,7 +129,7 @@ def test_grad_list_var_args():
self.net = net
def construct(self, *inputs):
return C.grad_by_list(self.net, self.weights)(*inputs)
return grad_by_list(self.net, self.weights)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -139,7 +146,7 @@ def test_grad_all_var_args():
self.net = net
def construct(self, *inputs):
return C.grad_all(self.net)(*inputs)
return grad_all(self.net)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -156,7 +163,7 @@ def test_grad_all_var_args_with_sens():
self.net = net
def construct(self, *inputs):
return C.grad_all_with_sens(self.net)(*inputs)
return grad_all_with_sens(self.net)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -174,7 +181,7 @@ def test_grad_var_args_with_sens():
self.net = net
def construct(self, *inputs):
return C.grad_with_sens(self.net)(*inputs)
return grad_with_sens(self.net)(*inputs)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -233,7 +240,7 @@ def test_var_args_grad():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, x, y, sens):
return C.grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
return grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
@ -268,7 +275,7 @@ def test_var_args_positional():
self.weights = ParameterTuple(net.trainable_params())
def construct(self, x, y):
return C.grad_all(self.net)(x, y)
return grad_all(self.net)(x, y)
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)

View File

@ -37,6 +37,9 @@ from ...ut_filter import non_graph_engine
# W0613: unused-argument
grad_all = C.GradOperation('get_all', get_all=True)
log = logging.getLogger("test")
log.setLevel(level=logging.ERROR)
context.set_context(mode=context.GRAPH_MODE)
@ -176,7 +179,7 @@ def test_bprop_with_wrong_output_num():
return BpropWithWrongOutputNum()(x, y)
with pytest.raises(ValueError):
C.grad_all(BpropWithWrongOutputNumCell())(1, 2)
grad_all(BpropWithWrongOutputNumCell())(1, 2)
def test_bprop_with_wrong_output_type():
context.set_context(check_bprop=True)
@ -211,7 +214,7 @@ def test_bprop_with_wrong_output_type():
return BpropWithWrongOutputType()(x)
with pytest.raises(TypeError):
C.grad_all(BpropWithWrongOutputTypeCell())(Tensor(np.ones([64, 10]).astype(np.int32)))
grad_all(BpropWithWrongOutputTypeCell())(Tensor(np.ones([64, 10]).astype(np.int32)))
def test_bprop_with_wrong_output_shape():
@ -250,4 +253,4 @@ def test_bprop_with_wrong_output_shape():
with pytest.raises(ValueError):
net = BpropWithWrongOutputShapeCell()
net.set_grad()
C.grad_all(net)(Tensor(np.ones([64, 10]).astype(np.int32)))
grad_all(net)(Tensor(np.ones([64, 10]).astype(np.int32)))

View File

@ -22,20 +22,24 @@ from mindspore.common.api import ms_function
from mindspore.common.dtype import get_py_obj_dtype
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops.composite import grad_all_with_sens
from ...ut_filter import non_graph_engine
# pylint: disable=unused-argument
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
grad = C.GradOperation('grad')
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
def mul(x, y):
return x * y
@ms_function
def mainf(x, y):
return C.grad(mul)(x, y)
return grad(mul)(x, y)
@non_graph_engine
@ -94,7 +98,7 @@ def test_scalar_cast_grad():
@ms_function
def grad_fx_cast(input_x):
return C.grad(fx_cast)(input_x)
return grad(fx_cast)(input_x)
gfn = grad_fx_cast(input_x)
expect_dx = 1

View File

@ -35,6 +35,12 @@ def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
grad = C.GradOperation('grad')
grad_all = C.GradOperation('get_all', get_all=True)
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
@ms_function
def while_upper_bound(upper):
rval = 2
@ -109,12 +115,12 @@ def add_mul(x, y):
def mainf(x, y):
""" mainf """
return C.grad_all(mul)(x, y)
return grad_all(mul)(x, y)
def grad_add_mul(x, y):
""" grad_add_mul """
return C.grad_all(add_mul)(x, y)
return grad_all(add_mul)(x, y)
@ms_function
@ -269,7 +275,7 @@ def rec(x):
@ms_function
def grad_rec(input_x):
return C.grad(rec)(input_x)
return grad(rec)(input_x)
def test_grad_rec():
""" test_grad_rec """
@ -300,7 +306,7 @@ def test_while2():
def test_grad_while2():
@ms_function
def df_t2_while(input_x, input_y):
return C.grad(t2_while)(input_x, input_y)
return grad(t2_while)(input_x, input_y)
assert df_t2_while(2, 3) == 3
@ -313,7 +319,7 @@ def if_test(a, b):
def grad_if(x, y):
""" grad_if """
return C.grad_all(if_test)(x, y)
return grad_all(if_test)(x, y)
def test_grad_if():
@ -333,7 +339,7 @@ def test_dont_unroll_while():
@ms_function()
def invoke_while(x, y):
return C.grad(dont_unroll_while)(x, y)
return grad(dont_unroll_while)(x, y)
res = invoke_while(2, 3)
assert res == 3
@ -418,7 +424,7 @@ def _while(x):
def grad_while(x):
""" grad_while """
return C.grad_all(_while)(x)
return grad_all(_while)(x)
def test_grad_while():
@ -442,7 +448,7 @@ def test_factorial():
def test_grad_factorial():
@ms_function
def df_factorial(x):
return C.grad(factorial)(x)
return grad(factorial)(x)
assert df_factorial(3) == 11
@ -520,7 +526,7 @@ def _for(x):
@ms_function
def grad_for(x):
""" grad_for """
return C.grad_all(_for)(x)
return grad_all(_for)(x)
def test_grad_for():
@ -792,7 +798,7 @@ def multi_outputs(x, y):
def test_grad_multi_outputs():
@ms_function
def df_multi_outputs(x, y):
return C.grad_all_with_sens(multi_outputs)(x, y, (1, 1))
return grad_all_with_sens(multi_outputs)(x, y, (1, 1))
assert df_multi_outputs(2, 3) == (4, 4)
@ -820,7 +826,7 @@ def grad_refactor_simple_1(x, y):
def test_grad_refactor_simple_1():
assert C.grad_all(grad_refactor_simple_1)(Tensor(2, dtype=ms.int32), Tensor(1, dtype=ms.int32)) == (4, 2)
assert grad_all(grad_refactor_simple_1)(Tensor(2, dtype=ms.int32), Tensor(1, dtype=ms.int32)) == (4, 2)
def grad_refactor_simple_2(x, y, z):
@ -832,7 +838,7 @@ def test_grad_refactor_simple_2():
x = Tensor(2, dtype=ms.int32)
y = Tensor(3, dtype=ms.int32)
z = Tensor(0, dtype=ms.int32)
assert C.grad_all(grad_refactor_simple_2)(x, y, z) == (7, 4, 7)
assert grad_all(grad_refactor_simple_2)(x, y, z) == (7, 4, 7)
def grad_refactor_1(a, b):
@ -845,7 +851,7 @@ def grad_refactor_1(a, b):
def test_grad_refactor_1():
assert C.grad_all(grad_refactor_1)(Tensor(2, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (3, 2)
assert grad_all(grad_refactor_1)(Tensor(2, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (3, 2)
def grad_refactor_2(a, b):
@ -858,7 +864,7 @@ def grad_refactor_2(a, b):
def test_grad_refactor_2():
assert C.grad_all(grad_refactor_2)(Tensor(2, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (27, 54)
assert grad_all(grad_refactor_2)(Tensor(2, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (27, 54)
def grad_refactor_3(a):
@ -871,7 +877,7 @@ def grad_refactor_3(a):
def test_grad_refactor_3():
@ms_function
def df_refactor_3(x):
return C.grad_all(grad_refactor_3)(x)
return grad_all(grad_refactor_3)(x)
assert df_refactor_3(3) == (3,)
@ -883,7 +889,7 @@ def grad_refactor_4(a):
def test_grad_refactor_4():
assert C.grad_all(grad_refactor_4)(Tensor(4, dtype=ms.int32)) == (3,)
assert grad_all(grad_refactor_4)(Tensor(4, dtype=ms.int32)) == (3,)
def grad_refactor_5(a):
@ -896,7 +902,7 @@ def grad_refactor_5(a):
def test_grad_refactor_5():
@ms_function
def df_refactor_5(x):
return C.grad_all(grad_refactor_5)(x)
return grad_all(grad_refactor_5)(x)
assert df_refactor_5(1) == (1,)
@ -908,7 +914,7 @@ def grad_refactor_6(a, b):
def test_grad_refactor_6():
assert C.grad_all(grad_refactor_6)(Tensor(3, dtype=ms.int32), Tensor(2, dtype=ms.int32)) == (3, 1)
assert grad_all(grad_refactor_6)(Tensor(3, dtype=ms.int32), Tensor(2, dtype=ms.int32)) == (3, 1)
def grad_refactor_while(x):
@ -922,7 +928,7 @@ def grad_refactor_while(x):
def test_grad_refactor_9():
@ms_function
def df_refactor_while(input_x):
return C.grad_all(grad_refactor_while)(input_x)
return grad_all(grad_refactor_while)(input_x)
assert df_refactor_while(3) == (6,)
@ -938,7 +944,7 @@ def grad_refactor__while_1(x):
def test_grad_refactor_10():
""" test_grad_while """
assert C.grad_all(grad_refactor__while_1)(Tensor(5, dtype=ms.int32)) == (60,)
assert grad_all(grad_refactor__while_1)(Tensor(5, dtype=ms.int32)) == (60,)
def test_grad_refactor_11():
@ -952,7 +958,7 @@ def test_grad_refactor_11():
return x * y * y
net = Net()
C.grad_all(net)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.ones([2]).astype(np.float32)))
grad_all(net)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.ones([2]).astype(np.float32)))
def test_grad_refactor_12():
@ -967,7 +973,7 @@ def test_grad_refactor_12():
return x * self.z * y
net = Net()
C.grad_all(net)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.zeros([2]).astype(np.float32)))
grad_all(net)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.zeros([2]).astype(np.float32)))
def test_grad_refactor_13():
@ -983,7 +989,7 @@ def test_grad_refactor_13():
net = Net()
weights = ParameterTuple(net.trainable_params())
C.grad_by_list(net, weights)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.zeros([2]).astype(np.float32)))
grad_by_list(net, weights)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.zeros([2]).astype(np.float32)))
def grad_refactor_14(a, b):
@ -1006,7 +1012,7 @@ def grad_refactor_14(a, b):
def test_grad_refactor_14():
@ms_function
def df_refactor_14(x, y):
return C.grad_all(grad_refactor_14)(x, y)
return grad_all(grad_refactor_14)(x, y)
assert df_refactor_14(2, 3) == (3, 9)
@ -1029,7 +1035,7 @@ def test_grad_if_defer_inline():
network = IfDeferInline([128, 96])
network.add_flags(defer_inline=False)
inp = Tensor(np.ones([128, 96]).astype(np.float32))
grads = C.grad_all(network)(inp)
grads = grad_all(network)(inp)
assert np.all(grads[0].asnumpy() == np.full([128, 96], 0.6, dtype=np.float32))

View File

@ -15,9 +15,13 @@
""" test_high_order_grad """
from mindspore import context
from mindspore.common.api import ms_function
from mindspore.ops.composite import grad, grad_all, grad_all_with_sens
import mindspore.ops.composite as C
grad = C.GradOperation('grad')
grad_all = C.GradOperation('get_all', get_all=True)
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE, check_bprop=False)

View File

@ -28,6 +28,9 @@ var_hook_done = False
cell_bprop_done = False
grad_all = C.GradOperation('get_all', get_all=True)
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
@ -175,7 +178,7 @@ def test_custom_bprop():
mul_add.bprop_debug = True
x = Tensor(np.array([1, 2, 3]).astype(np.int32))
y = Tensor(np.array([2, 3, 4]).astype(np.int32))
C.grad_all(mul_add)(x, y)
grad_all(mul_add)(x, y)
assert bprop_debug
@ -190,7 +193,7 @@ def test_grad_all():
net = Net()
x = Tensor(np.array([1, 2, 3]).astype(np.int32))
y = Tensor(np.array([2, 3, 4]).astype(np.int32))
res = C.grad_all(net)(x, y)
res = grad_all(net)(x, y)
print(res)
def test_check_input():

View File

@ -20,6 +20,9 @@ from mindspore import Tensor, nn
from mindspore.ops import composite as C
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
def test_float_tensor_and_int_add():
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
y = 2
@ -139,7 +142,7 @@ def test_float_tensor_and_bool_tensors_add_grad():
self.net = net
def construct(self, x, y, sens):
return C.grad_all_with_sens(self.net)(x, y, sens)
return grad_all_with_sens(self.net)(x, y, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
y = Tensor(np.array([[True, True, True], [False, False, False]], dtype=np.bool_))
@ -167,7 +170,7 @@ def test_float_tensor_and_int_tensors_sub_grad():
self.net = net
def construct(self, x, y, sens):
return C.grad_all_with_sens(self.net)(x, y, sens)
return grad_all_with_sens(self.net)(x, y, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
@ -195,7 +198,7 @@ def test_float16_tensor_and_float32_tensors_sub_grad():
self.net = net
def construct(self, x, y, sens):
return C.grad_all_with_sens(self.net)(x, y, sens)
return grad_all_with_sens(self.net)(x, y, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.int32))
y = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=np.float32))
@ -223,7 +226,7 @@ def test_float_tensor_and_int_add_grad():
self.net = net
def construct(self, x, sens):
return C.grad_all_with_sens(self.net)(x, sens)
return grad_all_with_sens(self.net)(x, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
@ -248,7 +251,7 @@ def test_int8_tensor_and_uint8_tensors_add_grad():
self.net = net
def construct(self, x, y, sens):
return C.grad_all_with_sens(self.net)(x, y, sens)
return grad_all_with_sens(self.net)(x, y, sens)
x = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int8))
y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8))

View File

@ -26,6 +26,10 @@ from ....mindspore_test_framework.utils.bprop_util import bprop
from ....mindspore_test_framework.utils.debug_util import PrintShapeTypeCell, PrintGradShapeTypeCell
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
grad_all = C.GradOperation('get_all', get_all=True)
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
@ -48,7 +52,7 @@ def test_InsertGradientOf_1():
@ms_function
def f(x, y):
return C.grad_all(stop_test)(x, y)
return grad_all(stop_test)(x, y)
print("stop_gradient:", f(1, 2))
@ -83,7 +87,7 @@ def test_InsertGradientOf_2():
@ms_function
def fd(x, y):
return C.grad_all(clip_test)(x, y)
return grad_all(clip_test)(x, y)
print("forward: ", f(1.1, 0.1))
print("clip_gradient:", fd(1.1, 0.1))
@ -111,7 +115,7 @@ def test_InsertGradientOf_3():
return c
def f(x, y):
return C.grad_all(debug_test)(x, y)
return grad_all(debug_test)(x, y)
print("debug_gradient:", f(Tensor(1.0), Tensor(2.0)))
@ -145,7 +149,7 @@ def test_cell_assign():
self.weights = mindspore.ParameterTuple(net.get_parameters())
def construct(self, x, y):
return C.grad_by_list(self.net, self.weights)(x, y)
return grad_by_list(self.net, self.weights)(x, y)
class Mul(nn.Cell):
def __init__(self):

View File

@ -24,6 +24,9 @@ from mindspore.ops import operations as P
from ..ut_filter import non_graph_engine
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
@ -38,7 +41,7 @@ class GradWrap(nn.Cell):
def construct(self, x, label):
weights = self.weights
return C.grad_by_list(self.network, weights)(x, label)
return grad_by_list(self.network, weights)(x, label)
@non_graph_engine

View File

@ -31,6 +31,10 @@ from ..ut_filter import non_graph_engine
from ....mindspore_test_framework.utils.bprop_util import bprop
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
grad_all = C.GradOperation('get_all', get_all=True)
def setup_module(module):
context.set_context(mode=context.PYNATIVE_MODE)
@ -85,19 +89,19 @@ def stop_test4(x, y):
@ms_function
def grad_stop_test(x, y):
""" grad_stop_test """
return C.grad_all(stop_test2)(x, y)
return grad_all(stop_test2)(x, y)
@ms_function
def grad_stop_test1(x, y):
""" grad_stop_test1 """
return C.grad_all(stop_test3)(x, y)
return grad_all(stop_test3)(x, y)
@ms_function
def grad_stop_test5(x, y):
""" grad_stop_test5 """
return C.grad_all(stop_test5)(x, y)
return grad_all(stop_test5)(x, y)
def test_stop():
@ -126,7 +130,7 @@ class GradWrap(nn.Cell):
@ms_function
def construct(self, x, label):
weights = self.weights
return C.grad_by_list(self.network, weights)(x, label)
return grad_by_list(self.network, weights)(x, label)
@non_graph_engine
@ -256,7 +260,7 @@ def test_stop_gradient_4():
def stop_test(x):
return stop_gradient(x)
assert C.grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (1,)
assert grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (1,)
def test_stop_gradient_5():
@ -266,7 +270,7 @@ def test_stop_gradient_5():
ret = x + y
return ret
assert C.grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (1,)
assert grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (1,)
def test_stop_gradient_6():
@ -275,7 +279,7 @@ def test_stop_gradient_6():
ret = stop_gradient(ret)
return ret
assert C.grad_all(stop_test)(Tensor(1, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (0, 0)
assert grad_all(stop_test)(Tensor(1, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (0, 0)
class PrimWithMultiOutputs(PrimitiveWithInfer):
@ -436,5 +440,5 @@ def test_stop_print():
self.printm(y)
return x, y
C.grad_all(StopPrint())(Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))
grad_all(StopPrint())(Tensor(np.ones([2]).astype(np.float32)),
Tensor(np.ones([2]).astype(np.float32)))

View File

@ -21,6 +21,9 @@ from mindspore import dtype as mstype
from mindspore.ops import composite as C
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
def test_user_define_bprop_check_ok():
class Net(nn.Cell):
def __init__(self):
@ -40,7 +43,7 @@ def test_user_define_bprop_check_ok():
self.net = net
def construct(self, x, sens):
return C.grad_all_with_sens(self.net)(x, sens)
return grad_all_with_sens(self.net)(x, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
@ -72,7 +75,7 @@ def test_user_define_bprop_no_check_dtype():
self.net = net
def construct(self, x, sens):
return C.grad_all_with_sens(self.net)(x, sens)
return grad_all_with_sens(self.net)(x, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
@ -104,7 +107,7 @@ def test_user_define_bprop_check_shape():
self.net = net
def construct(self, x, sens):
return C.grad_all_with_sens(self.net)(x, sens)
return grad_all_with_sens(self.net)(x, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
@ -135,7 +138,7 @@ def test_user_define_bprop_check_dtype():
self.net = net
def construct(self, x, sens):
return C.grad_all_with_sens(self.net)(x, sens)
return grad_all_with_sens(self.net)(x, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
@ -167,7 +170,7 @@ def test_user_define_bprop_check_parameter():
self.net = net
def construct(self, x, sens):
return C.grad_all_with_sens(self.net)(x, sens)
return grad_all_with_sens(self.net)(x, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
@ -198,7 +201,7 @@ def test_user_define_bprop_check_number():
self.net = net
def construct(self, x, y, sens):
return C.grad_all_with_sens(self.net)(x, y, sens)
return grad_all_with_sens(self.net)(x, y, sens)
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
y = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))