forked from mindspore-Ecosystem/mindspore
remove global grad ops
This commit is contained in:
parent
eb2437d517
commit
637e812347
|
@ -21,7 +21,6 @@ Pre-defined combination of operators.
|
|||
|
||||
|
||||
from .base import GradOperation, HyperMap, Map, MultitypeFuncGraph, add_flags, \
|
||||
grad, grad_all, grad_all_with_sens, grad_by_list, grad_by_list_with_sens, grad_with_sens, \
|
||||
core, env_get, tail, zip_operation
|
||||
from .clip_ops import clip_by_value
|
||||
from .multitype_ops.add_impl import hyper_add
|
||||
|
@ -31,12 +30,6 @@ from .random_ops import set_seed, normal, uniform, gamma, poisson, multinomial
|
|||
|
||||
|
||||
__all__ = [
|
||||
'grad',
|
||||
'grad_by_list_with_sens',
|
||||
'grad_all',
|
||||
'grad_by_list',
|
||||
'grad_all_with_sens',
|
||||
'grad_with_sens',
|
||||
'env_get',
|
||||
'core',
|
||||
'add_flags',
|
||||
|
|
|
@ -163,14 +163,6 @@ class GradOperation(GradOperation_):
|
|||
return self.grad_fn
|
||||
|
||||
|
||||
grad = GradOperation('grad')
|
||||
grad_all = GradOperation('get_all', get_all=True)
|
||||
grad_by_list = GradOperation('get_by_list', get_by_list=True)
|
||||
grad_with_sens = GradOperation('grad_with_sens', sens_param=True)
|
||||
grad_all_with_sens = GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
grad_by_list_with_sens = GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True)
|
||||
|
||||
|
||||
class MultitypeFuncGraph(MultitypeFuncGraph_):
|
||||
"""
|
||||
Generate multiply graph.
|
||||
|
|
|
@ -268,6 +268,7 @@ class HookBackward(PrimitiveWithInfer):
|
|||
>>> def hook_fn(grad_out):
|
||||
>>> print(grad_out)
|
||||
>>>
|
||||
>>> grad_all = GradOperation('get_all', get_all=True)
|
||||
>>> hook = P.HookBackward(hook_fn)
|
||||
>>>
|
||||
>>> def hook_test(x, y):
|
||||
|
@ -277,7 +278,7 @@ class HookBackward(PrimitiveWithInfer):
|
|||
>>> return z
|
||||
>>>
|
||||
>>> def backward(x, y):
|
||||
>>> return C.grad_all(hook_test)(x, y)
|
||||
>>> return grad_all(hook_test)(x, y)
|
||||
>>>
|
||||
>>> backward(1, 2)
|
||||
"""
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore import Tensor
|
|||
from mindspore.common.api import _executor
|
||||
|
||||
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
class InputBackward(nn.Cell):
|
||||
""" InputBackward definition """
|
||||
|
||||
|
@ -30,7 +33,7 @@ class InputBackward(nn.Cell):
|
|||
super(InputBackward, self).__init__()
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
self.grad = C.grad_all_with_sens
|
||||
self.grad = grad_all_with_sens
|
||||
self.c1 = c1
|
||||
self.c2 = c2
|
||||
|
||||
|
|
|
@ -26,6 +26,9 @@ from mindspore.common.api import _executor
|
|||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
batch_size = 1
|
||||
channel = 1
|
||||
height = 32
|
||||
|
@ -38,7 +41,7 @@ class LeNetGrad(nn.Cell):
|
|||
|
||||
def __init__(self, network):
|
||||
super(LeNetGrad, self).__init__()
|
||||
self.grad_op = C.grad_all_with_sens
|
||||
self.grad_op = grad_all_with_sens
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, sens):
|
||||
|
|
|
@ -28,6 +28,10 @@ from mindspore.ops import operations as P
|
|||
# context.set_context(save_graphs=True)
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
def test_while_forward():
|
||||
class MyWhileNet(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -70,7 +74,7 @@ def test_while_grad():
|
|||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_all(self.net)(*inputs)
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -157,7 +161,7 @@ def test_while_with_param_grad():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -222,7 +226,7 @@ def test_while_opt_endless():
|
|||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_all(self.net)(*inputs)
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -285,7 +289,7 @@ def test_while_with_param_grad_with_const_branch():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -325,7 +329,7 @@ def test_for_while_with_param_grad_with_const_branch():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -362,7 +366,7 @@ def test_for_while_with_param_grad_basic():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -399,7 +403,7 @@ def test_for_while_with_param_grad_normal():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -433,7 +437,7 @@ def test_while_with_param_basic_grad():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -467,7 +471,7 @@ def test_while_with_param_basic_grad_mul():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -502,7 +506,7 @@ def test_while_with_param_basic_grad_two():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -538,7 +542,7 @@ def test_while_with_param_basic_grad_three():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -575,7 +579,7 @@ def test_while_if_with_param_grad():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -608,7 +612,7 @@ def test_while_with_param_grad_not_enter_while():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, a, b, c):
|
||||
return C.grad_by_list(self.net, self.weights)(a, b, c)
|
||||
return grad_by_list(self.net, self.weights)(a, b, c)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
while_net = MyWhileNet()
|
||||
|
@ -670,7 +674,7 @@ def test_with_param_if_by_if_grad_inputs():
|
|||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_all(self.net)(*inputs)
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
if_net = MyIfByIfNet()
|
||||
|
@ -704,7 +708,7 @@ def test_with_param_if_by_if_grad_parameter():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_by_list(self.net, self.weights)(*inputs)
|
||||
return grad_by_list(self.net, self.weights)(*inputs)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
if_net = MyIfByIfNet()
|
||||
|
@ -736,7 +740,7 @@ def test_with_param_if_by_if_grad_param_excute_null():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_by_list(self.net, self.weights)(*inputs)
|
||||
return grad_by_list(self.net, self.weights)(*inputs)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
if_net = MyIfByIfNet()
|
||||
|
@ -770,7 +774,7 @@ def test_if_by_if_return_inside_grad():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_by_list(self.net, self.weights)(*inputs)
|
||||
return grad_by_list(self.net, self.weights)(*inputs)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True)
|
||||
if_net = MyIfByIfNet()
|
||||
|
|
|
@ -25,12 +25,15 @@ from mindspore.common.api import _executor
|
|||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
class MeanAggregatorGrad(nn.Cell):
|
||||
"""Backward of MeanAggregator"""
|
||||
|
||||
def __init__(self, network):
|
||||
super(MeanAggregatorGrad, self).__init__()
|
||||
self.grad_op = C.grad_all_with_sens
|
||||
self.grad_op = grad_all_with_sens
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, sens):
|
||||
|
|
|
@ -28,6 +28,10 @@ from mindspore.ops import operations as P
|
|||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class MulAdd(nn.Cell):
|
||||
def construct(self, x, y):
|
||||
return 2 * x + y
|
||||
|
@ -43,7 +47,7 @@ def test_grad_mul_add():
|
|||
mul_add = MulAdd()
|
||||
x = Tensor(1, dtype=ms.int32)
|
||||
y = Tensor(2, dtype=ms.int32)
|
||||
assert C.grad_all(mul_add)(x, y) == (2, 4)
|
||||
assert grad_all(mul_add)(x, y) == (2, 4)
|
||||
|
||||
|
||||
class InlineMulADD(nn.Cell):
|
||||
|
@ -62,7 +66,7 @@ def test_grad_inline_mul_add():
|
|||
inline_mul_add = InlineMulADD()
|
||||
x = Tensor(1, dtype=ms.int32)
|
||||
y = Tensor(2, dtype=ms.int32)
|
||||
assert C.grad_all(inline_mul_add)(x, y) == (3, 6)
|
||||
assert grad_all(inline_mul_add)(x, y) == (3, 6)
|
||||
|
||||
|
||||
class WithParameter(nn.Cell):
|
||||
|
@ -84,7 +88,7 @@ class WithParameter(nn.Cell):
|
|||
def test_with_param():
|
||||
with_param = WithParameter()
|
||||
with pytest.raises(RuntimeError):
|
||||
C.grad_all(with_param)(1, 2)
|
||||
grad_all(with_param)(1, 2)
|
||||
|
||||
|
||||
class WithNoBprop(nn.Cell):
|
||||
|
@ -98,7 +102,7 @@ def test_with_no_bprop():
|
|||
with_no_bprop = WithNoBprop()
|
||||
x = Tensor(1, dtype=ms.int32)
|
||||
y = Tensor(2, dtype=ms.int32)
|
||||
assert C.grad_all(with_no_bprop)(x, y) == (2, 1)
|
||||
assert grad_all(with_no_bprop)(x, y) == (2, 1)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
|
@ -118,10 +122,10 @@ def test_grad_in_bprop_1():
|
|||
self.f = GradInBprop_1()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.f(x, y), C.grad_all(self.f)(x, y)
|
||||
return self.f(x, y), grad_all(self.f)(x, y)
|
||||
|
||||
def bprop(self, x, y, out, dout):
|
||||
grads = C.grad_all(self.f)(x, y)
|
||||
grads = grad_all(self.f)(x, y)
|
||||
return out[1][0], grads[1]
|
||||
|
||||
class GradInBprop_3(nn.Cell):
|
||||
|
@ -133,8 +137,8 @@ def test_grad_in_bprop_1():
|
|||
return self.f(x, y)
|
||||
|
||||
grad_in_bprop = GradInBprop_3()
|
||||
grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
|
||||
Tensor(np.ones([2, 2]).astype(np.float32)))
|
||||
grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
|
||||
Tensor(np.ones([2, 2]).astype(np.float32)))
|
||||
assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
|
||||
assert (grads[1].asnumpy() == np.zeros([2, 2]).astype(np.float32)).all()
|
||||
|
||||
|
@ -159,10 +163,10 @@ def test_grad_in_bprop_2():
|
|||
self.f = GradInBprop_1()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.f(x, y), C.grad_all(self.f)(x, y)
|
||||
return self.f(x, y), grad_all(self.f)(x, y)
|
||||
|
||||
def bprop(self, x, y, out, dout):
|
||||
grads = C.grad_all(self.f)(x, y)
|
||||
grads = grad_all(self.f)(x, y)
|
||||
return out[1][0], grads[1]
|
||||
|
||||
class GradInBprop_3(nn.Cell):
|
||||
|
@ -174,8 +178,8 @@ def test_grad_in_bprop_2():
|
|||
return self.f(x, y)
|
||||
|
||||
grad_in_bprop = GradInBprop_3()
|
||||
grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
|
||||
Tensor(np.ones([2, 2]).astype(np.float32)))
|
||||
grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
|
||||
Tensor(np.ones([2, 2]).astype(np.float32)))
|
||||
assert (grads[0].asnumpy() == np.ones([2, 2]).astype(np.float32)).all()
|
||||
assert (grads[1].asnumpy() == np.array([[2, 2], [2, 2]]).astype(np.float32)).all()
|
||||
|
||||
|
@ -197,10 +201,10 @@ def test_grad_in_bprop_3():
|
|||
self.f = GradInBprop_1()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.f(x, y), C.grad_all(self.f)(x, y)
|
||||
return self.f(x, y), grad_all(self.f)(x, y)
|
||||
|
||||
def bprop(self, x, y, out, dout):
|
||||
grads = C.grad_all(self.f)(x, y)
|
||||
grads = grad_all(self.f)(x, y)
|
||||
return out[1][0], grads[1]
|
||||
|
||||
class GradInBprop_3(nn.Cell):
|
||||
|
@ -215,8 +219,8 @@ def test_grad_in_bprop_3():
|
|||
return x + y + y + out[0], x + x + y + y + dout[0]
|
||||
|
||||
grad_in_bprop = GradInBprop_3()
|
||||
grads = C.grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
|
||||
Tensor(np.ones([2, 2]).astype(np.float32)))
|
||||
grads = grad_all(grad_in_bprop)(Tensor(np.ones([2, 2]).astype(np.float32)),
|
||||
Tensor(np.ones([2, 2]).astype(np.float32)))
|
||||
assert (grads[0].asnumpy() == np.array([[4, 4], [4, 4]]).astype(np.float32)).all()
|
||||
assert (grads[1].asnumpy() == np.array([[5, 5], [5, 5]]).astype(np.float32)).all()
|
||||
|
||||
|
@ -238,7 +242,7 @@ class OneInputBprop(nn.Cell):
|
|||
def test_grad_one_input_bprop():
|
||||
net = OneInputBprop()
|
||||
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
|
||||
grad = C.grad_all(net)(input1)
|
||||
grad = grad_all(net)(input1)
|
||||
assert (grad[0].asnumpy() == np.array([5, 5]).astype(np.float32)).all()
|
||||
|
||||
|
||||
|
@ -253,10 +257,10 @@ class InlineBpropTwoInput(nn.Cell):
|
|||
self.f = TwoInput()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.f(x, y), C.grad_all(self.f)(x, y)
|
||||
return self.f(x, y), grad_all(self.f)(x, y)
|
||||
|
||||
def bprop(self, x, y, out, dout):
|
||||
grads = C.grad_all(self.f)(x, y)
|
||||
grads = grad_all(self.f)(x, y)
|
||||
return grads[0] * 2, grads[1] * 2
|
||||
|
||||
@pytest.mark.level0
|
||||
|
@ -266,7 +270,7 @@ def test_grad_inline_bprop_two_input():
|
|||
net = InlineBpropTwoInput()
|
||||
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
|
||||
input2 = Tensor(np.ones([2, 2]).astype(np.float32))
|
||||
grads = C.grad_all(net)(input1, input2)
|
||||
grads = grad_all(net)(input1, input2)
|
||||
assert (grads[0].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
|
||||
assert (grads[1].asnumpy() == np.array([2, 2]).astype(np.float32)).all()
|
||||
assert len(grads) == 2
|
||||
|
@ -328,7 +332,7 @@ def test_grad_inline_bprop_multi_input():
|
|||
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
|
||||
input2 = Tensor(np.ones([2, 2]).astype(np.float32))
|
||||
net.init_parameters_data()
|
||||
grads = C.grad_all(net)(input1, input2)
|
||||
grads = grad_all(net)(input1, input2)
|
||||
assert (grads[0].asnumpy() == np.array([[12, 12], [12, 12]]).astype(np.float32)).all()
|
||||
assert (grads[1].asnumpy() == np.array([[19, 19], [19, 19]]).astype(np.float32)).all()
|
||||
assert len(grads) == 2
|
||||
|
@ -378,7 +382,7 @@ def test_grad_mul_add_with_wrong_output_num():
|
|||
context.set_context(check_bprop=True)
|
||||
mul_add = MulAddWithWrongOutputNum()
|
||||
with pytest.raises(TypeError):
|
||||
C.grad_all(mul_add)(1, 2)
|
||||
grad_all(mul_add)(1, 2)
|
||||
|
||||
|
||||
class MulAddWithWrongOutputType(nn.Cell):
|
||||
|
@ -395,7 +399,7 @@ def test_grad_mul_add_with_wrong_output_type():
|
|||
context.set_context(check_bprop=True)
|
||||
mul_add = MulAddWithWrongOutputType()
|
||||
with pytest.raises(TypeError):
|
||||
C.grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
|
||||
grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
|
||||
|
||||
|
||||
class MulAddWithWrongOutputShape(nn.Cell):
|
||||
|
@ -416,4 +420,4 @@ def test_grad_mul_add_with_wrong_output_shape():
|
|||
context.set_context(check_bprop=True)
|
||||
mul_add = MulAddWithWrongOutputShape()
|
||||
with pytest.raises(TypeError):
|
||||
C.grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
|
||||
grad_all(mul_add)(1, Tensor(np.ones([2, 2])))
|
||||
|
|
|
@ -22,6 +22,10 @@ from mindspore import Tensor
|
|||
from mindspore.ops import composite as C
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
grad_with_sens = C.GradOperation('grad_with_sens', sens_param=True)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""Net definition"""
|
||||
|
||||
|
@ -52,6 +56,6 @@ def test_grad_net():
|
|||
x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
|
||||
sens = np.array([1.0, 1.0, 1.0]).astype(np.float32)
|
||||
square = Net()
|
||||
dx = C.grad_with_sens(square)(Tensor(x), Tensor(sens))
|
||||
dx = grad_with_sens(square)(Tensor(x), Tensor(sens))
|
||||
expect = np.array([2.0, 8.0, 18.0]).astype(np.float32)
|
||||
assert (dx.asnumpy() == expect).all()
|
||||
|
|
|
@ -30,6 +30,9 @@ from mindspore.common.initializer import TruncatedNormal
|
|||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
@ -121,9 +124,6 @@ class test_custom_cell_base():
|
|||
|
||||
|
||||
class MulAdd(nn.Cell):
|
||||
def __init__(self):
|
||||
super(MulAdd, self).__init__()
|
||||
|
||||
def construct(self, x, y):
|
||||
return 2 * x + y
|
||||
|
||||
|
@ -181,8 +181,8 @@ def test_pynative_custom_bprop_and_Cell_MulAdd():
|
|||
custom_cell = test_custom_cell_base()
|
||||
mul_add = custom_cell.test_custom_cell_function(MulAdd())
|
||||
mul_add.bprop_debug = True
|
||||
C.grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32))
|
||||
assert C.grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32)) == \
|
||||
grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32))
|
||||
assert grad_all(mul_add)(Tensor(1, mstype.float32), Tensor(2, mstype.float32)) == \
|
||||
(Tensor(1.0, mstype.float32), Tensor(2.0, mstype.float32))
|
||||
|
||||
|
||||
|
@ -194,5 +194,5 @@ def test_pynative_custom_bprop_and_Cell_Ms_Cell():
|
|||
custom_cell = test_custom_cell_base()
|
||||
ms_Cell = custom_cell.test_custom_cell_function(Ms_Cell())
|
||||
ms_Cell.bprop_debug = True
|
||||
assert C.grad_all(ms_Cell)(Tensor(1, mstype.float32)) == (Tensor(1.0, mstype.float32),)
|
||||
assert grad_all(ms_Cell)(Tensor(1, mstype.float32)) == (Tensor(1.0, mstype.float32),)
|
||||
|
|
@ -29,6 +29,9 @@ from mindspore.ops import operations as P
|
|||
np.random.seed(1)
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
@ -122,7 +125,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def construct(self, x, label):
|
||||
weights = self.weights
|
||||
return C.grad_by_list(self.network, weights)(x, label)
|
||||
return grad_by_list(self.network, weights)(x, label)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
|
|
@ -40,6 +40,9 @@ np.random.seed(1)
|
|||
ds.config.set_seed(1)
|
||||
|
||||
|
||||
grad_by_list = CP.GradOperation('get_by_list', get_by_list=True)
|
||||
|
||||
|
||||
def weight_variable(shape):
|
||||
return initializer('XavierUniform', shape=shape, dtype=mstype.float32)
|
||||
|
||||
|
@ -389,7 +392,7 @@ class GradWrap(Cell):
|
|||
|
||||
def construct(self, x, label):
|
||||
weights = self.weights
|
||||
return CP.grad_by_list(self.network, weights)(x, label)
|
||||
return grad_by_list(self.network, weights)(x, label)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.common.parameter import ParameterTuple
|
|||
from mindspore.ops import composite as C
|
||||
|
||||
|
||||
grad_by_list_with_sens = C.GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True)
|
||||
|
||||
|
||||
def setup_module():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
@ -319,9 +322,6 @@ def test_setitem_by_mixed_tensors_2():
|
|||
|
||||
|
||||
class TensorGetItemByMixedTensorsTypeError(Cell):
|
||||
def __init__(self):
|
||||
super(TensorGetItemByMixedTensorsTypeError, self).__init__()
|
||||
|
||||
def construct(self, x, index_0, index_1):
|
||||
ret = x[index_0, index_1, 0:3, ..., 0:5, [1, 2, 3, 4]]
|
||||
return ret
|
||||
|
@ -667,7 +667,7 @@ def test_setitem_grad():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, x, y, sens):
|
||||
return C.grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
|
||||
return grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
|
||||
net = GradNet(Net())
|
||||
x = Tensor(np.ones([4, 4, 5]).astype(np.float32), mstype.float32)
|
||||
y = Tensor(np.array([3]).astype(np.float32), mstype.float32)
|
||||
|
@ -676,27 +676,18 @@ def test_setitem_grad():
|
|||
|
||||
|
||||
class TensorAssignWithSliceError1(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithSliceError1, self).__init__()
|
||||
|
||||
def construct(self, a, b):
|
||||
a[1:3:-1, ::] = b
|
||||
return a
|
||||
|
||||
|
||||
class TensorAssignWithSliceError2(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithSliceError2, self).__init__()
|
||||
|
||||
def construct(self, a, b):
|
||||
a[1:3:-1] = b
|
||||
return a
|
||||
|
||||
|
||||
class TensorAssignWithSlice2(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithSlice2, self).__init__()
|
||||
|
||||
def construct(self, a, b, ck):
|
||||
a[1:5] = b
|
||||
a[3:4] = 5
|
||||
|
@ -864,18 +855,12 @@ def test_tensor_assign_exception():
|
|||
|
||||
|
||||
class TensorAssignWithTupleEllipsis2(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithTupleEllipsis2, self).__init__()
|
||||
|
||||
def construct(self, a, b):
|
||||
a[1:, ..., ::] = b
|
||||
return a
|
||||
|
||||
|
||||
class TensorAssignWithTupleEllipsis(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithTupleEllipsis, self).__init__()
|
||||
|
||||
def construct(self, a, b):
|
||||
a[:2, ...] = 1.0
|
||||
a[1:, ...] = b
|
||||
|
@ -883,9 +868,6 @@ class TensorAssignWithTupleEllipsis(Cell):
|
|||
|
||||
|
||||
class TensorAssignWithEllipsis(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithEllipsis, self).__init__()
|
||||
|
||||
def construct(self, a, b):
|
||||
a[...] = 1
|
||||
a[...] = b
|
||||
|
@ -893,9 +875,6 @@ class TensorAssignWithEllipsis(Cell):
|
|||
|
||||
|
||||
class TensorAssignWithInteger(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithInteger, self).__init__()
|
||||
|
||||
def construct(self, a, b, ck):
|
||||
a[1] = 1
|
||||
a[0] = b
|
||||
|
@ -904,9 +883,6 @@ class TensorAssignWithInteger(Cell):
|
|||
|
||||
|
||||
class TensorAssignWithTupleInteger(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithTupleInteger, self).__init__()
|
||||
|
||||
def construct(self, a, b, ck):
|
||||
a[(1)] = 1
|
||||
a[(1)] = b
|
||||
|
@ -930,9 +906,6 @@ class TensorAssignWithBoolTensorIndex(Cell):
|
|||
|
||||
|
||||
class TensorAssignWithBoolTensorIndexError(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithBoolTensorIndexError, self).__init__()
|
||||
|
||||
def construct(self, a, b, c, u_tensor):
|
||||
a[b][c] = u_tensor
|
||||
return a
|
||||
|
@ -955,9 +928,6 @@ class TensorAssignWithBoolTensorIndex2(Cell):
|
|||
|
||||
|
||||
class TensorAssignWithBoolTensorIndex2Error(Cell):
|
||||
def __init__(self):
|
||||
super(TensorAssignWithBoolTensorIndex2Error, self).__init__()
|
||||
|
||||
def construct(self, a, u_tensor):
|
||||
a[a > 8][a > 5] = u_tensor
|
||||
return a
|
||||
|
|
|
@ -31,6 +31,9 @@ from tests.mindspore_test_framework.pipeline.forward.compile_forward \
|
|||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
def test_list_equal():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, z: list):
|
||||
|
@ -303,7 +306,7 @@ def test_grad_make_list():
|
|||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_all(self.net)(*inputs)
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
while_net = MyWhileNet()
|
||||
net = GradNet(while_net)
|
||||
|
|
|
@ -18,8 +18,11 @@ import numpy as np
|
|||
from mindspore import Parameter, ParameterTuple, Tensor
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.nn.optim import Optimizer
|
||||
from mindspore.ops.composite import grad_by_list
|
||||
from mindspore.ops.operations import BiasAdd, MatMul
|
||||
import mindspore.ops.composite as C
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
|
|
|
@ -28,6 +28,9 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|||
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
||||
|
||||
|
||||
grad_by_list_with_sens = C.GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True)
|
||||
|
||||
|
||||
class DisOrderTest1(nn.Cell):
|
||||
""" DisOrderTest1 definition """
|
||||
|
||||
|
@ -72,7 +75,7 @@ class GradNetWrap(nn.Cell):
|
|||
self.weights = ParameterTuple(net.get_parameters())
|
||||
|
||||
def construct(self, x, sens):
|
||||
return C.grad_by_list_with_sens(self.net, self.weights)(x, sens)
|
||||
return grad_by_list_with_sens(self.net, self.weights)(x, sens)
|
||||
|
||||
|
||||
test_case_ops = [
|
||||
|
|
|
@ -30,6 +30,11 @@ from mindspore.common import ms_function
|
|||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
def cond_data_test(x_init, y_init):
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -401,9 +406,9 @@ def test_switch_layer():
|
|||
index = Tensor(0, dtype=mstype.int32)
|
||||
net = SwitchLayerCell()
|
||||
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
|
||||
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
|
||||
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
|
||||
|
||||
def test_index_to_switch_layer():
|
||||
|
@ -439,9 +444,9 @@ def test_index_to_switch_layer():
|
|||
index = Tensor(0, dtype=mstype.int32)
|
||||
net = SwitchLayerCell()
|
||||
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
|
||||
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
|
||||
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
|
||||
|
||||
def test_parser_switch_layer_switch_in_bprop():
|
||||
|
@ -477,7 +482,7 @@ def test_parser_switch_layer_switch_in_bprop():
|
|||
input1 = Tensor(np.ones([2, 2]).astype(np.float32))
|
||||
grad = Tensor(np.random.randn(2, 2).astype(np.float32))
|
||||
i = Tensor(1, mstype.int32)
|
||||
grad_net = C.grad_all_with_sens(net)
|
||||
grad_net = grad_all_with_sens(net)
|
||||
grad_net(i, input1, grad)
|
||||
|
||||
|
||||
|
@ -520,7 +525,7 @@ def test_parser_switch_layer_inputs_tuple():
|
|||
input2 = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
|
||||
i = Tensor(1, mstype.int32)
|
||||
grad = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
|
||||
back_net = C.grad_all_with_sens(net)
|
||||
back_net = grad_all_with_sens(net)
|
||||
back_out = back_net(i, input1, input2, grad)
|
||||
|
||||
|
||||
|
@ -539,9 +544,9 @@ def test_switch_layer_with_single_prim():
|
|||
index = Tensor(0, dtype=mstype.int32)
|
||||
net = SwitchLayerCell()
|
||||
net(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
C.grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
|
||||
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
C.grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
grad_by_list(net, ParameterTuple(net.trainable_params()))(index,
|
||||
Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
grad_all(net)(index, Tensor(np.full([128, 96], 0.6, dtype=np.float32)))
|
||||
|
||||
|
||||
def test_switch_layer_env_eliminate():
|
||||
|
|
|
@ -38,6 +38,8 @@ context.set_context(mode=context.GRAPH_MODE)
|
|||
# W0613: unused-argument
|
||||
# W0231: super-init-not-called
|
||||
|
||||
grad = C.GradOperation('grad')
|
||||
|
||||
def test_multiply():
|
||||
""" test_multiply """
|
||||
input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
|
||||
|
@ -200,7 +202,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad(self.network)(x, y, b)
|
||||
return grad(self.network)(x, y, b)
|
||||
|
||||
|
||||
class MatMulNet(nn.Cell):
|
||||
|
@ -236,7 +238,7 @@ class GradWrapSub(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad(self.network)(x, y)
|
||||
return grad(self.network)(x, y)
|
||||
|
||||
|
||||
class SubNet(nn.Cell):
|
||||
|
@ -315,7 +317,7 @@ class GradWrapCumSum(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, input_):
|
||||
return C.grad(self.network)(input_)
|
||||
return grad(self.network)(input_)
|
||||
|
||||
|
||||
class NetCumSum(nn.Cell):
|
||||
|
|
|
@ -34,6 +34,9 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|||
run_opt = C.MultitypeFuncGraph("run_opt")
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
|
||||
|
||||
@run_opt.register("Function", "Tensor", "Tensor", "Tensor",
|
||||
"Tensor", "Tensor",
|
||||
"Tensor")
|
||||
|
@ -83,7 +86,7 @@ class TrainStepWrap(nn.Cell):
|
|||
|
||||
def construct(self, x, label):
|
||||
weights = self.weights
|
||||
grads = C.grad_by_list(self.network, weights)(x, label)
|
||||
grads = grad_by_list(self.network, weights)(x, label)
|
||||
return self.optimizer(grads)
|
||||
|
||||
|
||||
|
|
|
@ -45,6 +45,10 @@ def conv1x1(in_channels, out_channels, stride=1, padding=0):
|
|||
kernel_size=1, stride=stride, padding=padding)
|
||||
|
||||
|
||||
grad = C.GradOperation('grad')
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Cell):
|
||||
"""
|
||||
residual Block
|
||||
|
@ -169,7 +173,7 @@ class SoftMaxGrad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad(self.network)(x)
|
||||
return grad(self.network)(x)
|
||||
|
||||
|
||||
class DropoutGrad(nn.Cell):
|
||||
|
@ -180,7 +184,7 @@ class DropoutGrad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad(self.network)(x)
|
||||
return grad(self.network)(x)
|
||||
|
||||
|
||||
class ScalarSummaryNet(nn.Cell):
|
||||
|
@ -255,7 +259,7 @@ class Grad(nn.Cell):
|
|||
self.network.set_train()
|
||||
|
||||
def construct(self, x, label):
|
||||
return C.grad(self.network)(x, label)
|
||||
return grad(self.network)(x, label)
|
||||
|
||||
|
||||
class BatchnormNet(nn.Cell):
|
||||
|
@ -418,7 +422,7 @@ class GradWrapUnfold(nn.Cell):
|
|||
self.sens = Tensor(np.ones([1, 4, 2, 2], np.float32))
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all_with_sens(self.network)(x, self.sens)
|
||||
return grad_all_with_sens(self.network)(x, self.sens)
|
||||
|
||||
|
||||
class UnfoldNetValid(nn.Cell):
|
||||
|
|
|
@ -34,12 +34,16 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|||
from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
|
||||
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
|
||||
|
||||
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
class InputBackward(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(InputBackward, self).__init__()
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
self.grad = C.grad_all_with_sens
|
||||
self.grad = grad_all_with_sens
|
||||
|
||||
def construct(self, x1, x2, x3, sens):
|
||||
return self.grad(self.network)(x1, x2, x3, sens)
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.parallel._utils import _set_has_initializer
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class AddRelu(nn.Cell):
|
||||
def __init__(self, strategy0=None, strategy1=None):
|
||||
super(AddRelu, self).__init__()
|
||||
|
@ -52,7 +55,7 @@ class Grad(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def compile_net(net, x, y):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.parallel._utils import _set_has_initializer
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
|
@ -516,7 +519,7 @@ def test_assign_sub():
|
|||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
def compile_sub_net(net, x):
|
||||
net.set_auto_parallel()
|
||||
|
|
|
@ -27,6 +27,9 @@ from mindspore.common.parameter import Parameter
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -44,7 +47,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
|
||||
def compile_net(net, x):
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore.ops import composite as C
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -45,7 +48,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -27,6 +27,9 @@ from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -44,7 +47,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b, phase):
|
||||
|
|
|
@ -25,6 +25,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -26,6 +26,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, z, w):
|
||||
return C.grad_all(self.network)(x, y, z, w)
|
||||
return grad_all(self.network)(x, y, z, w)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, z):
|
||||
return C.grad_all(self.network)(x, y, z)
|
||||
return grad_all(self.network)(x, y, z)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, z, w, a):
|
||||
return C.grad_all(self.network)(x, y, z, w, a)
|
||||
return grad_all(self.network)(x, y, z, w, a)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, z, w, a, b, c):
|
||||
return C.grad_all(self.network)(x, y, z, w, a, b, c)
|
||||
return grad_all(self.network)(x, y, z, w, a, b, c)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, z, w, b):
|
||||
return C.grad_all(self.network)(x, y, z, w, b)
|
||||
return grad_all(self.network)(x, y, z, w, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, z, w, b):
|
||||
|
|
|
@ -25,6 +25,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def test_auto_parallel_l2normalize():
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
# model_parallel test
|
||||
|
|
|
@ -26,6 +26,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -30,6 +30,9 @@ from tests.ut.python.ops.test_math_ops import VirtualLoss
|
|||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class Dataset(MindData):
|
||||
def __init__(self, predict, label, length=3):
|
||||
super(Dataset, self).__init__(size=length)
|
||||
|
@ -68,7 +71,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def test_auto_parallel_arithmetic():
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, z, w, b):
|
||||
return C.grad_all(self.network)(x, y, z, w, b)
|
||||
return grad_all(self.network)(x, y, z, w, b)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
|
|
|
@ -25,6 +25,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
|
||||
def test_reshape_matmul():
|
||||
|
@ -211,7 +214,7 @@ def test_reshape_auto_5():
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -261,7 +264,7 @@ def test_reshape_auto_6():
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore.ops import composite as C
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def test_softmax_cross_entropy_loss_auto_parallel():
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
|
||||
class CustomDense(nn.Cell):
|
||||
|
|
|
@ -25,6 +25,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
# core dump, step_auto_parallel should SetInputs for transpose axis
|
||||
|
|
|
@ -25,6 +25,9 @@ from mindspore.ops.operations.comm_ops import _VirtualDataset
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def bn_with_initialize(out_channels):
|
||||
|
|
|
@ -27,6 +27,9 @@ from mindspore.parallel._utils import _reset_op_id as reset_op_id
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -44,7 +47,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, z, w, a):
|
||||
return C.grad_all(self.network)(x, y, z, w, a)
|
||||
return grad_all(self.network)(x, y, z, w, a)
|
||||
|
||||
# model_parallel test
|
||||
|
||||
|
|
|
@ -26,6 +26,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
class CustomMatMul(nn.Cell):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, w1, w2):
|
||||
return C.grad_all(self.network)(x, w1, w2)
|
||||
return grad_all(self.network)(x, w1, w2)
|
||||
|
||||
|
||||
class NetConv(nn.Cell):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
# model_parallel test
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def test_matmul_add():
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
|
|
|
@ -23,13 +23,16 @@ from mindspore.ops import composite as C
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def compile_net(net, x, y):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
|
|
|
@ -22,13 +22,17 @@ from mindspore.ops import composite as C
|
|||
from mindspore import Tensor, context
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -25,6 +25,9 @@ from mindspore.ops import operations as P
|
|||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network, types, shapes, output_num, strategy3=None, strategy4=None, axis=-1):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -49,7 +52,7 @@ class GradWrap(nn.Cell):
|
|||
self.weights = ParameterTuple(network.trainable_params())
|
||||
|
||||
def construct(self):
|
||||
return C.grad_by_list(self.network, self.weights)()
|
||||
return grad_by_list(self.network, self.weights)()
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
# model_parallel test
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore.ops import composite as C
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network, strategy3):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, bias, label):
|
||||
return C.grad_all(self.network)(x, y, bias, label)
|
||||
return grad_all(self.network)(x, y, bias, label)
|
||||
|
||||
|
||||
def test_linear():
|
||||
|
|
|
@ -25,6 +25,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def loop_config(size):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
# model_parallel test
|
||||
|
|
|
@ -26,6 +26,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def compile_net(net, x, y):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b, z):
|
||||
return C.grad_all(self.network)(x, y, b, z)
|
||||
return grad_all(self.network)(x, y, b, z)
|
||||
|
||||
|
||||
class Net1(nn.Cell):
|
||||
|
|
|
@ -29,6 +29,10 @@ from mindspore.train import Model, ParallelMode
|
|||
from tests.dataset_mock import MindData
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
device_num = 16
|
||||
device_id = 2
|
||||
|
||||
|
@ -233,7 +237,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, b):
|
||||
return C.grad_all(self.network)(x, b)
|
||||
return grad_all(self.network)(x, b)
|
||||
|
||||
|
||||
def bn_with_initialize(out_channels):
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore.ops import composite as C
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network, strategy3):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -42,7 +45,7 @@ class OneStepCell(nn.Cell):
|
|||
|
||||
def construct(self, data, label):
|
||||
weights = self.weights
|
||||
grads = C.grad_by_list(self.network, weights)(data, label)
|
||||
grads = grad_by_list(self.network, weights)(data, label)
|
||||
return grads
|
||||
|
||||
|
||||
|
|
|
@ -26,6 +26,9 @@ from mindspore.ops.operations.comm_ops import _VirtualDataset
|
|||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network, strategy3, strategy4, axis):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -49,7 +52,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def compile_net(net, x, y):
|
||||
|
@ -140,7 +143,7 @@ def test_prelu_parallel_success3():
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, w):
|
||||
return C.grad_all(self.network)(x, y, w)
|
||||
return grad_all(self.network)(x, y, w)
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLossNoBias(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLossNoBias, self).__init__()
|
||||
|
@ -52,7 +55,7 @@ class GradWrapNoBias(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
|
@ -61,7 +64,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net_no_bias(net, x, y):
|
||||
|
|
|
@ -36,6 +36,9 @@ context.set_context(mode=context.GRAPH_MODE)
|
|||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class Dataset(MindData):
|
||||
def __init__(self, predict, label, length=3, input_num=2):
|
||||
super(Dataset, self).__init__(size=length)
|
||||
|
@ -194,7 +197,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
|
||||
class ReshapeNet1(nn.Cell):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -24,13 +24,16 @@ from mindspore.ops import functional as F
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def test_sum_as_loss():
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore.ops import composite as C
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network, strategy3=None):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -40,7 +43,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
|
|
|
@ -26,13 +26,16 @@ from mindspore.common.api import _executor
|
|||
from mindspore.nn import TrainOneStepCell, Adam
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return C.grad_all(self.network)(x)
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
def test_bprop_with_sparse_feature_allreduce():
|
||||
context.set_auto_parallel_context(device_num=8, global_rank=0, parallel_mode="hybrid_parallel")
|
||||
|
|
|
@ -25,6 +25,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -42,7 +45,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
|
|
|
@ -24,13 +24,17 @@ from mindspore.ops import composite as C
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, b, sens):
|
||||
return C.grad_all_with_sens(self.network)(x, y, b, sens)
|
||||
return grad_all_with_sens(self.network)(x, y, b, sens)
|
||||
|
||||
|
||||
class GradWrap2(nn.Cell):
|
||||
|
@ -41,7 +45,7 @@ class GradWrap2(nn.Cell):
|
|||
def construct(self, x, y, b):
|
||||
loss = self.network(x, y, b)
|
||||
sens = P.Fill()(mstype.float32, P.Shape()(loss), 1.0)
|
||||
return C.grad_all_with_sens(self.network)(x, y, b, sens)
|
||||
return grad_all_with_sens(self.network)(x, y, b, sens)
|
||||
|
||||
|
||||
class GradWrap3(nn.Cell):
|
||||
|
@ -50,7 +54,7 @@ class GradWrap3(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, bias):
|
||||
return C.grad_all(self.network)(x, y, bias)
|
||||
return grad_all(self.network)(x, y, bias)
|
||||
|
||||
class GradWrap4(nn.Cell):
|
||||
def __init__(self, network):
|
||||
|
@ -58,7 +62,7 @@ class GradWrap4(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b, a):
|
||||
return C.grad_all(self.network)(x, y, b, a)
|
||||
return grad_all(self.network)(x, y, b, a)
|
||||
|
||||
|
||||
def test_two_matmul():
|
||||
|
|
|
@ -25,6 +25,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
# model_parallel test
|
||||
def test_six_matmul_save():
|
||||
class NetWithLoss(nn.Cell):
|
||||
|
@ -43,7 +46,7 @@ def test_six_matmul_save():
|
|||
self.network = network
|
||||
|
||||
def construct(self, x1, x6):
|
||||
return C.grad_all(self.network)(x1, x6)
|
||||
return grad_all(self.network)(x1, x6)
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5, strategy6):
|
||||
|
@ -105,7 +108,7 @@ def test_six_matmul_load():
|
|||
self.network = network
|
||||
|
||||
def construct(self, x1, x6, x7):
|
||||
return C.grad_all(self.network)(x1, x6, x7)
|
||||
return grad_all(self.network)(x1, x6, x7)
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy3, strategy4, strategy5, strategy6, strategy7):
|
||||
|
@ -167,7 +170,7 @@ def test_six_matmul_save_auto():
|
|||
self.network = network
|
||||
|
||||
def construct(self, x1, x6):
|
||||
return C.grad_all(self.network)(x1, x6)
|
||||
return grad_all(self.network)(x1, x6)
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -223,7 +226,7 @@ def test_six_matmul_load_auto():
|
|||
self.network = network
|
||||
|
||||
def construct(self, x1, x6, x7):
|
||||
return C.grad_all(self.network)(x1, x6, x7)
|
||||
return grad_all(self.network)(x1, x6, x7)
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy3, strategy4, strategy5):
|
||||
|
|
|
@ -23,13 +23,16 @@ from mindspore.ops import composite as C
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.network)(x, y)
|
||||
return grad_all(self.network)(x, y)
|
||||
|
||||
|
||||
def compile_net(net, x, y):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -41,7 +44,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
|
|
|
@ -23,6 +23,9 @@ from mindspore.ops import composite as C
|
|||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network, strategy3):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -42,7 +45,7 @@ class OneStepCell(nn.Cell):
|
|||
|
||||
def construct(self, data, label):
|
||||
weights = self.weights
|
||||
grads = C.grad_by_list(self.network, weights)(data, label)
|
||||
grads = grad_by_list(self.network, weights)(data, label)
|
||||
return grads
|
||||
|
||||
|
||||
|
|
|
@ -26,6 +26,9 @@ from mindspore.ops.operations.comm_ops import _VirtualDataset
|
|||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
|
@ -43,7 +46,7 @@ class GradWrap(nn.Cell):
|
|||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return C.grad_all(self.network)(x, y, b)
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
# model_parallel test
|
||||
|
|
|
@ -23,6 +23,10 @@ from mindspore.ops import operations as P
|
|||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
def test_parser_three_default_mixed_args_subnet():
|
||||
class SubNetDefaultMixedArgs(Cell):
|
||||
def __init__(self):
|
||||
|
@ -216,7 +220,7 @@ def test_net_vargs_expand():
|
|||
super(InputBackward, self).__init__()
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
self.grad = C.grad_all_with_sens
|
||||
self.grad = grad_all_with_sens
|
||||
self.c1 = c1
|
||||
self.c2 = c2
|
||||
|
||||
|
|
|
@ -25,6 +25,13 @@ from mindspore.ops import operations as P
|
|||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
grad_by_list_with_sens = C.GradOperation('grad_by_list_with_sens', get_by_list=True, sens_param=True)
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
grad_with_sens = C.GradOperation('grad_with_sens', sens_param=True)
|
||||
|
||||
|
||||
def test_net_vargs_expand():
|
||||
class AddNet(Cell):
|
||||
def __init__(self):
|
||||
|
@ -39,7 +46,7 @@ def test_net_vargs_expand():
|
|||
y = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
|
||||
sens = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
|
||||
net = AddNet()
|
||||
_ = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens)
|
||||
_ = grad_all_with_sens(net, net.trainable_params())(x, y, sens)
|
||||
|
||||
|
||||
class VarNet(Cell):
|
||||
|
@ -104,7 +111,7 @@ def test_all_var_args_grad_with_sens():
|
|||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_by_list_with_sens(self.net, self.weights)(*inputs)
|
||||
return grad_by_list_with_sens(self.net, self.weights)(*inputs)
|
||||
|
||||
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
|
@ -122,7 +129,7 @@ def test_grad_list_var_args():
|
|||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_by_list(self.net, self.weights)(*inputs)
|
||||
return grad_by_list(self.net, self.weights)(*inputs)
|
||||
|
||||
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
|
@ -139,7 +146,7 @@ def test_grad_all_var_args():
|
|||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_all(self.net)(*inputs)
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
|
@ -156,7 +163,7 @@ def test_grad_all_var_args_with_sens():
|
|||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_all_with_sens(self.net)(*inputs)
|
||||
return grad_all_with_sens(self.net)(*inputs)
|
||||
|
||||
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
|
@ -174,7 +181,7 @@ def test_grad_var_args_with_sens():
|
|||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return C.grad_with_sens(self.net)(*inputs)
|
||||
return grad_with_sens(self.net)(*inputs)
|
||||
|
||||
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
|
@ -233,7 +240,7 @@ def test_var_args_grad():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, x, y, sens):
|
||||
return C.grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
|
||||
return grad_by_list_with_sens(self.net, self.weights)(x, y, sens)
|
||||
|
||||
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
|
@ -268,7 +275,7 @@ def test_var_args_positional():
|
|||
self.weights = ParameterTuple(net.trainable_params())
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_all(self.net)(x, y)
|
||||
return grad_all(self.net)(x, y)
|
||||
|
||||
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
|
||||
|
|
|
@ -37,6 +37,9 @@ from ...ut_filter import non_graph_engine
|
|||
# W0613: unused-argument
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
log = logging.getLogger("test")
|
||||
log.setLevel(level=logging.ERROR)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
@ -176,7 +179,7 @@ def test_bprop_with_wrong_output_num():
|
|||
return BpropWithWrongOutputNum()(x, y)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
C.grad_all(BpropWithWrongOutputNumCell())(1, 2)
|
||||
grad_all(BpropWithWrongOutputNumCell())(1, 2)
|
||||
|
||||
def test_bprop_with_wrong_output_type():
|
||||
context.set_context(check_bprop=True)
|
||||
|
@ -211,7 +214,7 @@ def test_bprop_with_wrong_output_type():
|
|||
return BpropWithWrongOutputType()(x)
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
C.grad_all(BpropWithWrongOutputTypeCell())(Tensor(np.ones([64, 10]).astype(np.int32)))
|
||||
grad_all(BpropWithWrongOutputTypeCell())(Tensor(np.ones([64, 10]).astype(np.int32)))
|
||||
|
||||
|
||||
def test_bprop_with_wrong_output_shape():
|
||||
|
@ -250,4 +253,4 @@ def test_bprop_with_wrong_output_shape():
|
|||
with pytest.raises(ValueError):
|
||||
net = BpropWithWrongOutputShapeCell()
|
||||
net.set_grad()
|
||||
C.grad_all(net)(Tensor(np.ones([64, 10]).astype(np.int32)))
|
||||
grad_all(net)(Tensor(np.ones([64, 10]).astype(np.int32)))
|
||||
|
|
|
@ -22,20 +22,24 @@ from mindspore.common.api import ms_function
|
|||
from mindspore.common.dtype import get_py_obj_dtype
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops.composite import grad_all_with_sens
|
||||
from ...ut_filter import non_graph_engine
|
||||
|
||||
# pylint: disable=unused-argument
|
||||
def setup_module(module):
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
||||
grad = C.GradOperation('grad')
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
def mul(x, y):
|
||||
return x * y
|
||||
|
||||
|
||||
@ms_function
|
||||
def mainf(x, y):
|
||||
return C.grad(mul)(x, y)
|
||||
return grad(mul)(x, y)
|
||||
|
||||
|
||||
@non_graph_engine
|
||||
|
@ -94,7 +98,7 @@ def test_scalar_cast_grad():
|
|||
|
||||
@ms_function
|
||||
def grad_fx_cast(input_x):
|
||||
return C.grad(fx_cast)(input_x)
|
||||
return grad(fx_cast)(input_x)
|
||||
|
||||
gfn = grad_fx_cast(input_x)
|
||||
expect_dx = 1
|
||||
|
|
|
@ -35,6 +35,12 @@ def setup_module(module):
|
|||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
||||
grad = C.GradOperation('grad')
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
@ms_function
|
||||
def while_upper_bound(upper):
|
||||
rval = 2
|
||||
|
@ -109,12 +115,12 @@ def add_mul(x, y):
|
|||
|
||||
def mainf(x, y):
|
||||
""" mainf """
|
||||
return C.grad_all(mul)(x, y)
|
||||
return grad_all(mul)(x, y)
|
||||
|
||||
|
||||
def grad_add_mul(x, y):
|
||||
""" grad_add_mul """
|
||||
return C.grad_all(add_mul)(x, y)
|
||||
return grad_all(add_mul)(x, y)
|
||||
|
||||
|
||||
@ms_function
|
||||
|
@ -269,7 +275,7 @@ def rec(x):
|
|||
|
||||
@ms_function
|
||||
def grad_rec(input_x):
|
||||
return C.grad(rec)(input_x)
|
||||
return grad(rec)(input_x)
|
||||
|
||||
def test_grad_rec():
|
||||
""" test_grad_rec """
|
||||
|
@ -300,7 +306,7 @@ def test_while2():
|
|||
def test_grad_while2():
|
||||
@ms_function
|
||||
def df_t2_while(input_x, input_y):
|
||||
return C.grad(t2_while)(input_x, input_y)
|
||||
return grad(t2_while)(input_x, input_y)
|
||||
assert df_t2_while(2, 3) == 3
|
||||
|
||||
|
||||
|
@ -313,7 +319,7 @@ def if_test(a, b):
|
|||
|
||||
def grad_if(x, y):
|
||||
""" grad_if """
|
||||
return C.grad_all(if_test)(x, y)
|
||||
return grad_all(if_test)(x, y)
|
||||
|
||||
|
||||
def test_grad_if():
|
||||
|
@ -333,7 +339,7 @@ def test_dont_unroll_while():
|
|||
|
||||
@ms_function()
|
||||
def invoke_while(x, y):
|
||||
return C.grad(dont_unroll_while)(x, y)
|
||||
return grad(dont_unroll_while)(x, y)
|
||||
|
||||
res = invoke_while(2, 3)
|
||||
assert res == 3
|
||||
|
@ -418,7 +424,7 @@ def _while(x):
|
|||
|
||||
def grad_while(x):
|
||||
""" grad_while """
|
||||
return C.grad_all(_while)(x)
|
||||
return grad_all(_while)(x)
|
||||
|
||||
|
||||
def test_grad_while():
|
||||
|
@ -442,7 +448,7 @@ def test_factorial():
|
|||
def test_grad_factorial():
|
||||
@ms_function
|
||||
def df_factorial(x):
|
||||
return C.grad(factorial)(x)
|
||||
return grad(factorial)(x)
|
||||
assert df_factorial(3) == 11
|
||||
|
||||
|
||||
|
@ -520,7 +526,7 @@ def _for(x):
|
|||
@ms_function
|
||||
def grad_for(x):
|
||||
""" grad_for """
|
||||
return C.grad_all(_for)(x)
|
||||
return grad_all(_for)(x)
|
||||
|
||||
|
||||
def test_grad_for():
|
||||
|
@ -792,7 +798,7 @@ def multi_outputs(x, y):
|
|||
def test_grad_multi_outputs():
|
||||
@ms_function
|
||||
def df_multi_outputs(x, y):
|
||||
return C.grad_all_with_sens(multi_outputs)(x, y, (1, 1))
|
||||
return grad_all_with_sens(multi_outputs)(x, y, (1, 1))
|
||||
assert df_multi_outputs(2, 3) == (4, 4)
|
||||
|
||||
|
||||
|
@ -820,7 +826,7 @@ def grad_refactor_simple_1(x, y):
|
|||
|
||||
|
||||
def test_grad_refactor_simple_1():
|
||||
assert C.grad_all(grad_refactor_simple_1)(Tensor(2, dtype=ms.int32), Tensor(1, dtype=ms.int32)) == (4, 2)
|
||||
assert grad_all(grad_refactor_simple_1)(Tensor(2, dtype=ms.int32), Tensor(1, dtype=ms.int32)) == (4, 2)
|
||||
|
||||
|
||||
def grad_refactor_simple_2(x, y, z):
|
||||
|
@ -832,7 +838,7 @@ def test_grad_refactor_simple_2():
|
|||
x = Tensor(2, dtype=ms.int32)
|
||||
y = Tensor(3, dtype=ms.int32)
|
||||
z = Tensor(0, dtype=ms.int32)
|
||||
assert C.grad_all(grad_refactor_simple_2)(x, y, z) == (7, 4, 7)
|
||||
assert grad_all(grad_refactor_simple_2)(x, y, z) == (7, 4, 7)
|
||||
|
||||
|
||||
def grad_refactor_1(a, b):
|
||||
|
@ -845,7 +851,7 @@ def grad_refactor_1(a, b):
|
|||
|
||||
|
||||
def test_grad_refactor_1():
|
||||
assert C.grad_all(grad_refactor_1)(Tensor(2, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (3, 2)
|
||||
assert grad_all(grad_refactor_1)(Tensor(2, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (3, 2)
|
||||
|
||||
|
||||
def grad_refactor_2(a, b):
|
||||
|
@ -858,7 +864,7 @@ def grad_refactor_2(a, b):
|
|||
|
||||
|
||||
def test_grad_refactor_2():
|
||||
assert C.grad_all(grad_refactor_2)(Tensor(2, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (27, 54)
|
||||
assert grad_all(grad_refactor_2)(Tensor(2, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (27, 54)
|
||||
|
||||
|
||||
def grad_refactor_3(a):
|
||||
|
@ -871,7 +877,7 @@ def grad_refactor_3(a):
|
|||
def test_grad_refactor_3():
|
||||
@ms_function
|
||||
def df_refactor_3(x):
|
||||
return C.grad_all(grad_refactor_3)(x)
|
||||
return grad_all(grad_refactor_3)(x)
|
||||
assert df_refactor_3(3) == (3,)
|
||||
|
||||
|
||||
|
@ -883,7 +889,7 @@ def grad_refactor_4(a):
|
|||
|
||||
|
||||
def test_grad_refactor_4():
|
||||
assert C.grad_all(grad_refactor_4)(Tensor(4, dtype=ms.int32)) == (3,)
|
||||
assert grad_all(grad_refactor_4)(Tensor(4, dtype=ms.int32)) == (3,)
|
||||
|
||||
|
||||
def grad_refactor_5(a):
|
||||
|
@ -896,7 +902,7 @@ def grad_refactor_5(a):
|
|||
def test_grad_refactor_5():
|
||||
@ms_function
|
||||
def df_refactor_5(x):
|
||||
return C.grad_all(grad_refactor_5)(x)
|
||||
return grad_all(grad_refactor_5)(x)
|
||||
assert df_refactor_5(1) == (1,)
|
||||
|
||||
|
||||
|
@ -908,7 +914,7 @@ def grad_refactor_6(a, b):
|
|||
|
||||
|
||||
def test_grad_refactor_6():
|
||||
assert C.grad_all(grad_refactor_6)(Tensor(3, dtype=ms.int32), Tensor(2, dtype=ms.int32)) == (3, 1)
|
||||
assert grad_all(grad_refactor_6)(Tensor(3, dtype=ms.int32), Tensor(2, dtype=ms.int32)) == (3, 1)
|
||||
|
||||
|
||||
def grad_refactor_while(x):
|
||||
|
@ -922,7 +928,7 @@ def grad_refactor_while(x):
|
|||
def test_grad_refactor_9():
|
||||
@ms_function
|
||||
def df_refactor_while(input_x):
|
||||
return C.grad_all(grad_refactor_while)(input_x)
|
||||
return grad_all(grad_refactor_while)(input_x)
|
||||
assert df_refactor_while(3) == (6,)
|
||||
|
||||
|
||||
|
@ -938,7 +944,7 @@ def grad_refactor__while_1(x):
|
|||
|
||||
def test_grad_refactor_10():
|
||||
""" test_grad_while """
|
||||
assert C.grad_all(grad_refactor__while_1)(Tensor(5, dtype=ms.int32)) == (60,)
|
||||
assert grad_all(grad_refactor__while_1)(Tensor(5, dtype=ms.int32)) == (60,)
|
||||
|
||||
|
||||
def test_grad_refactor_11():
|
||||
|
@ -952,7 +958,7 @@ def test_grad_refactor_11():
|
|||
return x * y * y
|
||||
|
||||
net = Net()
|
||||
C.grad_all(net)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.ones([2]).astype(np.float32)))
|
||||
grad_all(net)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.ones([2]).astype(np.float32)))
|
||||
|
||||
|
||||
def test_grad_refactor_12():
|
||||
|
@ -967,7 +973,7 @@ def test_grad_refactor_12():
|
|||
return x * self.z * y
|
||||
|
||||
net = Net()
|
||||
C.grad_all(net)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.zeros([2]).astype(np.float32)))
|
||||
grad_all(net)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.zeros([2]).astype(np.float32)))
|
||||
|
||||
|
||||
def test_grad_refactor_13():
|
||||
|
@ -983,7 +989,7 @@ def test_grad_refactor_13():
|
|||
|
||||
net = Net()
|
||||
weights = ParameterTuple(net.trainable_params())
|
||||
C.grad_by_list(net, weights)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.zeros([2]).astype(np.float32)))
|
||||
grad_by_list(net, weights)(Tensor(np.ones([2]).astype(np.float32)), Tensor(np.zeros([2]).astype(np.float32)))
|
||||
|
||||
|
||||
def grad_refactor_14(a, b):
|
||||
|
@ -1006,7 +1012,7 @@ def grad_refactor_14(a, b):
|
|||
def test_grad_refactor_14():
|
||||
@ms_function
|
||||
def df_refactor_14(x, y):
|
||||
return C.grad_all(grad_refactor_14)(x, y)
|
||||
return grad_all(grad_refactor_14)(x, y)
|
||||
assert df_refactor_14(2, 3) == (3, 9)
|
||||
|
||||
|
||||
|
@ -1029,7 +1035,7 @@ def test_grad_if_defer_inline():
|
|||
network = IfDeferInline([128, 96])
|
||||
network.add_flags(defer_inline=False)
|
||||
inp = Tensor(np.ones([128, 96]).astype(np.float32))
|
||||
grads = C.grad_all(network)(inp)
|
||||
grads = grad_all(network)(inp)
|
||||
assert np.all(grads[0].asnumpy() == np.full([128, 96], 0.6, dtype=np.float32))
|
||||
|
||||
|
||||
|
|
|
@ -15,9 +15,13 @@
|
|||
""" test_high_order_grad """
|
||||
from mindspore import context
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore.ops.composite import grad, grad_all, grad_all_with_sens
|
||||
import mindspore.ops.composite as C
|
||||
|
||||
|
||||
grad = C.GradOperation('grad')
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
def setup_module(module):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, check_bprop=False)
|
||||
|
||||
|
|
|
@ -28,6 +28,9 @@ var_hook_done = False
|
|||
cell_bprop_done = False
|
||||
|
||||
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
||||
"""weight initial for conv layer"""
|
||||
weight = weight_variable()
|
||||
|
@ -175,7 +178,7 @@ def test_custom_bprop():
|
|||
mul_add.bprop_debug = True
|
||||
x = Tensor(np.array([1, 2, 3]).astype(np.int32))
|
||||
y = Tensor(np.array([2, 3, 4]).astype(np.int32))
|
||||
C.grad_all(mul_add)(x, y)
|
||||
grad_all(mul_add)(x, y)
|
||||
assert bprop_debug
|
||||
|
||||
|
||||
|
@ -190,7 +193,7 @@ def test_grad_all():
|
|||
net = Net()
|
||||
x = Tensor(np.array([1, 2, 3]).astype(np.int32))
|
||||
y = Tensor(np.array([2, 3, 4]).astype(np.int32))
|
||||
res = C.grad_all(net)(x, y)
|
||||
res = grad_all(net)(x, y)
|
||||
print(res)
|
||||
|
||||
def test_check_input():
|
||||
|
|
|
@ -20,6 +20,9 @@ from mindspore import Tensor, nn
|
|||
from mindspore.ops import composite as C
|
||||
|
||||
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
def test_float_tensor_and_int_add():
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
y = 2
|
||||
|
@ -139,7 +142,7 @@ def test_float_tensor_and_bool_tensors_add_grad():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, y, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, y, sens)
|
||||
return grad_all_with_sens(self.net)(x, y, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
y = Tensor(np.array([[True, True, True], [False, False, False]], dtype=np.bool_))
|
||||
|
@ -167,7 +170,7 @@ def test_float_tensor_and_int_tensors_sub_grad():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, y, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, y, sens)
|
||||
return grad_all_with_sens(self.net)(x, y, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int32))
|
||||
|
@ -195,7 +198,7 @@ def test_float16_tensor_and_float32_tensors_sub_grad():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, y, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, y, sens)
|
||||
return grad_all_with_sens(self.net)(x, y, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.int32))
|
||||
y = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=np.float32))
|
||||
|
@ -223,7 +226,7 @@ def test_float_tensor_and_int_add_grad():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, sens)
|
||||
return grad_all_with_sens(self.net)(x, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
|
||||
|
@ -248,7 +251,7 @@ def test_int8_tensor_and_uint8_tensors_add_grad():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, y, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, y, sens)
|
||||
return grad_all_with_sens(self.net)(x, y, sens)
|
||||
|
||||
x = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.int8))
|
||||
y = Tensor(np.array([[1, 2, 3], [4, 5, 6]], dtype=np.uint8))
|
||||
|
|
|
@ -26,6 +26,10 @@ from ....mindspore_test_framework.utils.bprop_util import bprop
|
|||
from ....mindspore_test_framework.utils.debug_util import PrintShapeTypeCell, PrintGradShapeTypeCell
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
@ -48,7 +52,7 @@ def test_InsertGradientOf_1():
|
|||
|
||||
@ms_function
|
||||
def f(x, y):
|
||||
return C.grad_all(stop_test)(x, y)
|
||||
return grad_all(stop_test)(x, y)
|
||||
|
||||
print("stop_gradient:", f(1, 2))
|
||||
|
||||
|
@ -83,7 +87,7 @@ def test_InsertGradientOf_2():
|
|||
|
||||
@ms_function
|
||||
def fd(x, y):
|
||||
return C.grad_all(clip_test)(x, y)
|
||||
return grad_all(clip_test)(x, y)
|
||||
|
||||
print("forward: ", f(1.1, 0.1))
|
||||
print("clip_gradient:", fd(1.1, 0.1))
|
||||
|
@ -111,7 +115,7 @@ def test_InsertGradientOf_3():
|
|||
return c
|
||||
|
||||
def f(x, y):
|
||||
return C.grad_all(debug_test)(x, y)
|
||||
return grad_all(debug_test)(x, y)
|
||||
|
||||
print("debug_gradient:", f(Tensor(1.0), Tensor(2.0)))
|
||||
|
||||
|
@ -145,7 +149,7 @@ def test_cell_assign():
|
|||
self.weights = mindspore.ParameterTuple(net.get_parameters())
|
||||
|
||||
def construct(self, x, y):
|
||||
return C.grad_by_list(self.net, self.weights)(x, y)
|
||||
return grad_by_list(self.net, self.weights)(x, y)
|
||||
|
||||
class Mul(nn.Cell):
|
||||
def __init__(self):
|
||||
|
|
|
@ -24,6 +24,9 @@ from mindspore.ops import operations as P
|
|||
from ..ut_filter import non_graph_engine
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
@ -38,7 +41,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def construct(self, x, label):
|
||||
weights = self.weights
|
||||
return C.grad_by_list(self.network, weights)(x, label)
|
||||
return grad_by_list(self.network, weights)(x, label)
|
||||
|
||||
|
||||
@non_graph_engine
|
||||
|
|
|
@ -31,6 +31,10 @@ from ..ut_filter import non_graph_engine
|
|||
from ....mindspore_test_framework.utils.bprop_util import bprop
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation('get_by_list', get_by_list=True)
|
||||
grad_all = C.GradOperation('get_all', get_all=True)
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
|
||||
|
@ -85,19 +89,19 @@ def stop_test4(x, y):
|
|||
@ms_function
|
||||
def grad_stop_test(x, y):
|
||||
""" grad_stop_test """
|
||||
return C.grad_all(stop_test2)(x, y)
|
||||
return grad_all(stop_test2)(x, y)
|
||||
|
||||
|
||||
@ms_function
|
||||
def grad_stop_test1(x, y):
|
||||
""" grad_stop_test1 """
|
||||
return C.grad_all(stop_test3)(x, y)
|
||||
return grad_all(stop_test3)(x, y)
|
||||
|
||||
|
||||
@ms_function
|
||||
def grad_stop_test5(x, y):
|
||||
""" grad_stop_test5 """
|
||||
return C.grad_all(stop_test5)(x, y)
|
||||
return grad_all(stop_test5)(x, y)
|
||||
|
||||
|
||||
def test_stop():
|
||||
|
@ -126,7 +130,7 @@ class GradWrap(nn.Cell):
|
|||
@ms_function
|
||||
def construct(self, x, label):
|
||||
weights = self.weights
|
||||
return C.grad_by_list(self.network, weights)(x, label)
|
||||
return grad_by_list(self.network, weights)(x, label)
|
||||
|
||||
|
||||
@non_graph_engine
|
||||
|
@ -256,7 +260,7 @@ def test_stop_gradient_4():
|
|||
def stop_test(x):
|
||||
return stop_gradient(x)
|
||||
|
||||
assert C.grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (1,)
|
||||
assert grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (1,)
|
||||
|
||||
|
||||
def test_stop_gradient_5():
|
||||
|
@ -266,7 +270,7 @@ def test_stop_gradient_5():
|
|||
ret = x + y
|
||||
return ret
|
||||
|
||||
assert C.grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (1,)
|
||||
assert grad_all(stop_test)(Tensor(1, dtype=ms.int32)) == (1,)
|
||||
|
||||
|
||||
def test_stop_gradient_6():
|
||||
|
@ -275,7 +279,7 @@ def test_stop_gradient_6():
|
|||
ret = stop_gradient(ret)
|
||||
return ret
|
||||
|
||||
assert C.grad_all(stop_test)(Tensor(1, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (0, 0)
|
||||
assert grad_all(stop_test)(Tensor(1, dtype=ms.int32), Tensor(3, dtype=ms.int32)) == (0, 0)
|
||||
|
||||
|
||||
class PrimWithMultiOutputs(PrimitiveWithInfer):
|
||||
|
@ -436,5 +440,5 @@ def test_stop_print():
|
|||
self.printm(y)
|
||||
return x, y
|
||||
|
||||
C.grad_all(StopPrint())(Tensor(np.ones([2]).astype(np.float32)),
|
||||
Tensor(np.ones([2]).astype(np.float32)))
|
||||
grad_all(StopPrint())(Tensor(np.ones([2]).astype(np.float32)),
|
||||
Tensor(np.ones([2]).astype(np.float32)))
|
||||
|
|
|
@ -21,6 +21,9 @@ from mindspore import dtype as mstype
|
|||
from mindspore.ops import composite as C
|
||||
|
||||
|
||||
grad_all_with_sens = C.GradOperation('grad_all_with_sens', get_all=True, sens_param=True)
|
||||
|
||||
|
||||
def test_user_define_bprop_check_ok():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
|
@ -40,7 +43,7 @@ def test_user_define_bprop_check_ok():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, sens)
|
||||
return grad_all_with_sens(self.net)(x, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
|
||||
|
@ -72,7 +75,7 @@ def test_user_define_bprop_no_check_dtype():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, sens)
|
||||
return grad_all_with_sens(self.net)(x, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
|
||||
|
@ -104,7 +107,7 @@ def test_user_define_bprop_check_shape():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, sens)
|
||||
return grad_all_with_sens(self.net)(x, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
|
||||
|
@ -135,7 +138,7 @@ def test_user_define_bprop_check_dtype():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, sens)
|
||||
return grad_all_with_sens(self.net)(x, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
|
||||
|
@ -167,7 +170,7 @@ def test_user_define_bprop_check_parameter():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, sens)
|
||||
return grad_all_with_sens(self.net)(x, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
sens = Tensor(np.array([[1.0, 2.0, 0.0], [0.0, 3.0, 4.0]], dtype=np.float32))
|
||||
|
@ -198,7 +201,7 @@ def test_user_define_bprop_check_number():
|
|||
self.net = net
|
||||
|
||||
def construct(self, x, y, sens):
|
||||
return C.grad_all_with_sens(self.net)(x, y, sens)
|
||||
return grad_all_with_sens(self.net)(x, y, sens)
|
||||
|
||||
x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
y = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=np.float32))
|
||||
|
|
Loading…
Reference in New Issue