forked from mindspore-Ecosystem/mindspore
add SigmoidCrossEntropyWithLogitsGrad op
This commit is contained in:
parent
4642df207a
commit
636b8e2b88
|
@ -0,0 +1,41 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "kernel/gpu/cuda_impl/sigmoid_cross_entropy_with_logits_grad_impl.cuh"
|
||||||
|
|
||||||
|
template <typename T, typename S>
|
||||||
|
__global__ void SigmoidCrossEntropyWithLogitsGradKernel(const size_t size, const T *logits, const S *labels,
|
||||||
|
T *outputs) {
|
||||||
|
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
|
||||||
|
if (logits[i] >= 0) {
|
||||||
|
outputs[i] = 1. / (1. + exp(-logits[i])) - labels[i];
|
||||||
|
} else {
|
||||||
|
const T exp_val = exp(logits[i]);
|
||||||
|
outputs[i] = exp_val / (1. + exp_val) - labels[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, typename S>
|
||||||
|
void SigmoidCrossEntropyWithLogitsGrad(const size_t size, const T *logits, const S *labels, T *outputs,
|
||||||
|
cudaStream_t cuda_stream) {
|
||||||
|
SigmoidCrossEntropyWithLogitsGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, logits, labels,
|
||||||
|
outputs);
|
||||||
|
}
|
||||||
|
|
||||||
|
template void SigmoidCrossEntropyWithLogitsGrad<float, float>(const size_t size, const float *logits,
|
||||||
|
const float *labels, float *outputs,
|
||||||
|
cudaStream_t cuda_stream);
|
|
@ -0,0 +1,25 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_IMPL_H_
|
||||||
|
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_IMPL_H_
|
||||||
|
|
||||||
|
#include "device/gpu/cuda_common.h"
|
||||||
|
template <typename T, typename S>
|
||||||
|
void SigmoidCrossEntropyWithLogitsGrad(const size_t size, const T *logits, const S *labels, T *outputs,
|
||||||
|
cudaStream_t cuda_stream);
|
||||||
|
|
||||||
|
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_IMPL_H_
|
|
@ -0,0 +1,29 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "kernel/gpu/nn/sigmoid_cross_entropy_with_logits_grad_gpu_kernel.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
MS_REG_GPU_KERNEL_TWO(SigmoidCrossEntropyWithLogitsGrad,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32),
|
||||||
|
SigmoidCrossEntropyWithLogitsGradGpuKernel, float, float)
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,96 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_GPU_KERNEL_H_
|
||||||
|
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_GPU_KERNEL_H_
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include "kernel/gpu/gpu_kernel.h"
|
||||||
|
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||||
|
#include "kernel/gpu/cuda_impl/sigmoid_cross_entropy_with_logits_grad_impl.cuh"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
template <typename T, typename S>
|
||||||
|
class SigmoidCrossEntropyWithLogitsGradGpuKernel : public GpuKernel {
|
||||||
|
public:
|
||||||
|
SigmoidCrossEntropyWithLogitsGradGpuKernel() : logits_size_(0), labels_size_(0), outputs_size_(0) {}
|
||||||
|
~SigmoidCrossEntropyWithLogitsGradGpuKernel() override = default;
|
||||||
|
|
||||||
|
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||||
|
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||||
|
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||||
|
|
||||||
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||||
|
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||||
|
T *logits_addr = GetDeviceAddress<T>(inputs, 0);
|
||||||
|
S *labels_addr = GetDeviceAddress<S>(inputs, 1);
|
||||||
|
T *outputs_addr = GetDeviceAddress<T>(outputs, 0);
|
||||||
|
|
||||||
|
SigmoidCrossEntropyWithLogitsGrad(inputs[0]->size / sizeof(T), logits_addr, labels_addr, outputs_addr,
|
||||||
|
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool Init(const CNodePtr &kernel_node) override {
|
||||||
|
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||||
|
if (input_num != 3) {
|
||||||
|
MS_LOG(ERROR) << "Input number is " << input_num << ", but SigmoidCrossEntropyWithLogitsGrad needs 3 inputs.";
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
logits_size_ = sizeof(T);
|
||||||
|
labels_size_ = sizeof(S);
|
||||||
|
outputs_size_ = sizeof(T);
|
||||||
|
|
||||||
|
auto logits_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||||
|
for (size_t i = 0; i < logits_shape.size(); i++) {
|
||||||
|
logits_size_ *= logits_shape[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
auto labels_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||||
|
for (size_t i = 0; i < labels_shape.size(); i++) {
|
||||||
|
labels_size_ *= labels_shape[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||||
|
for (size_t i = 0; i < output_shape.size(); i++) {
|
||||||
|
outputs_size_ *= output_shape[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
InitSizeLists();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InitSizeLists() override {
|
||||||
|
input_size_list_.push_back(logits_size_);
|
||||||
|
input_size_list_.push_back(labels_size_);
|
||||||
|
output_size_list_.push_back(outputs_size_);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
size_t logits_size_;
|
||||||
|
size_t labels_size_;
|
||||||
|
size_t outputs_size_;
|
||||||
|
|
||||||
|
std::vector<size_t> input_size_list_;
|
||||||
|
std::vector<size_t> output_size_list_;
|
||||||
|
std::vector<size_t> workspace_size_list_;
|
||||||
|
};
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
|
||||||
|
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_GPU_KERNEL_H_
|
|
@ -0,0 +1,62 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops.operations import _grad_ops as G
|
||||||
|
|
||||||
|
|
||||||
|
class NetSigmoidCrossEntropyWithLogits(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(NetSigmoidCrossEntropyWithLogits, self).__init__()
|
||||||
|
self.sigmoid_cross_entropy_with_logits_grad = G.SigmoidCrossEntropyWithLogitsGrad()
|
||||||
|
|
||||||
|
def construct(self, logits, labels, dout):
|
||||||
|
return self.sigmoid_cross_entropy_with_logits_grad(logits, labels, dout)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_sigmoid_cross_entropy_with_logits():
|
||||||
|
logits = Tensor(np.array([[1, 1, 2],
|
||||||
|
[1, 2, 1],
|
||||||
|
[2, 1, 1]]).astype(np.float32))
|
||||||
|
labels = Tensor(np.array([[0, 0, 1],
|
||||||
|
[0, 1, 0],
|
||||||
|
[1, 0, 0]]).astype(np.float32))
|
||||||
|
dout = Tensor(np.ones(shape=[3, 3]).astype(np.float32))
|
||||||
|
|
||||||
|
expect = np.array([[0.731059, 0.731059, -0.119203],
|
||||||
|
[0.731059, -0.119203, 0.731059],
|
||||||
|
[-0.119203, 0.731059, 0.731059]]).astype(np.float32)
|
||||||
|
|
||||||
|
error = np.ones(shape=[3, 3]) * 1.0e-6
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
||||||
|
sigmoid_cross_entropy_with_logits = NetSigmoidCrossEntropyWithLogits()
|
||||||
|
output = sigmoid_cross_entropy_with_logits(logits, labels, dout)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(abs(diff) < error)
|
||||||
|
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
||||||
|
sigmoid_cross_entropy_with_logits = NetSigmoidCrossEntropyWithLogits()
|
||||||
|
output = sigmoid_cross_entropy_with_logits(logits, labels, dout)
|
||||||
|
diff = output.asnumpy() - expect
|
||||||
|
assert np.all(abs(diff) < error)
|
Loading…
Reference in New Issue