add SigmoidCrossEntropyWithLogitsGrad op

This commit is contained in:
lizhenyu 2020-06-17 16:51:37 +08:00
parent 4642df207a
commit 636b8e2b88
5 changed files with 253 additions and 0 deletions

View File

@ -0,0 +1,41 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/cuda_impl/sigmoid_cross_entropy_with_logits_grad_impl.cuh"
template <typename T, typename S>
__global__ void SigmoidCrossEntropyWithLogitsGradKernel(const size_t size, const T *logits, const S *labels,
T *outputs) {
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) {
if (logits[i] >= 0) {
outputs[i] = 1. / (1. + exp(-logits[i])) - labels[i];
} else {
const T exp_val = exp(logits[i]);
outputs[i] = exp_val / (1. + exp_val) - labels[i];
}
}
}
template <typename T, typename S>
void SigmoidCrossEntropyWithLogitsGrad(const size_t size, const T *logits, const S *labels, T *outputs,
cudaStream_t cuda_stream) {
SigmoidCrossEntropyWithLogitsGradKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, logits, labels,
outputs);
}
template void SigmoidCrossEntropyWithLogitsGrad<float, float>(const size_t size, const float *logits,
const float *labels, float *outputs,
cudaStream_t cuda_stream);

View File

@ -0,0 +1,25 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_IMPL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_IMPL_H_
#include "device/gpu/cuda_common.h"
template <typename T, typename S>
void SigmoidCrossEntropyWithLogitsGrad(const size_t size, const T *logits, const S *labels, T *outputs,
cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_IMPL_H_

View File

@ -0,0 +1,29 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/gpu/nn/sigmoid_cross_entropy_with_logits_grad_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_TWO(SigmoidCrossEntropyWithLogitsGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
SigmoidCrossEntropyWithLogitsGradGpuKernel, float, float)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,96 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_GPU_KERNEL_H_
#include <vector>
#include "kernel/gpu/gpu_kernel.h"
#include "kernel/gpu/gpu_kernel_factory.h"
#include "kernel/gpu/cuda_impl/sigmoid_cross_entropy_with_logits_grad_impl.cuh"
namespace mindspore {
namespace kernel {
template <typename T, typename S>
class SigmoidCrossEntropyWithLogitsGradGpuKernel : public GpuKernel {
public:
SigmoidCrossEntropyWithLogitsGradGpuKernel() : logits_size_(0), labels_size_(0), outputs_size_(0) {}
~SigmoidCrossEntropyWithLogitsGradGpuKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *logits_addr = GetDeviceAddress<T>(inputs, 0);
S *labels_addr = GetDeviceAddress<S>(inputs, 1);
T *outputs_addr = GetDeviceAddress<T>(outputs, 0);
SigmoidCrossEntropyWithLogitsGrad(inputs[0]->size / sizeof(T), logits_addr, labels_addr, outputs_addr,
reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 3) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but SigmoidCrossEntropyWithLogitsGrad needs 3 inputs.";
return false;
}
logits_size_ = sizeof(T);
labels_size_ = sizeof(S);
outputs_size_ = sizeof(T);
auto logits_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < logits_shape.size(); i++) {
logits_size_ *= logits_shape[i];
}
auto labels_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
for (size_t i = 0; i < labels_shape.size(); i++) {
labels_size_ *= labels_shape[i];
}
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
for (size_t i = 0; i < output_shape.size(); i++) {
outputs_size_ *= output_shape[i];
}
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(logits_size_);
input_size_list_.push_back(labels_size_);
output_size_list_.push_back(outputs_size_);
}
private:
size_t logits_size_;
size_t labels_size_;
size_t outputs_size_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_SIGMOID_CROSS_ENTROPY_WITH_LOGITS_GRAD_GPU_KERNEL_H_

View File

@ -0,0 +1,62 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops.operations import _grad_ops as G
class NetSigmoidCrossEntropyWithLogits(nn.Cell):
def __init__(self):
super(NetSigmoidCrossEntropyWithLogits, self).__init__()
self.sigmoid_cross_entropy_with_logits_grad = G.SigmoidCrossEntropyWithLogitsGrad()
def construct(self, logits, labels, dout):
return self.sigmoid_cross_entropy_with_logits_grad(logits, labels, dout)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sigmoid_cross_entropy_with_logits():
logits = Tensor(np.array([[1, 1, 2],
[1, 2, 1],
[2, 1, 1]]).astype(np.float32))
labels = Tensor(np.array([[0, 0, 1],
[0, 1, 0],
[1, 0, 0]]).astype(np.float32))
dout = Tensor(np.ones(shape=[3, 3]).astype(np.float32))
expect = np.array([[0.731059, 0.731059, -0.119203],
[0.731059, -0.119203, 0.731059],
[-0.119203, 0.731059, 0.731059]]).astype(np.float32)
error = np.ones(shape=[3, 3]) * 1.0e-6
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
sigmoid_cross_entropy_with_logits = NetSigmoidCrossEntropyWithLogits()
output = sigmoid_cross_entropy_with_logits(logits, labels, dout)
diff = output.asnumpy() - expect
assert np.all(abs(diff) < error)
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
sigmoid_cross_entropy_with_logits = NetSigmoidCrossEntropyWithLogits()
output = sigmoid_cross_entropy_with_logits(logits, labels, dout)
diff = output.asnumpy() - expect
assert np.all(abs(diff) < error)