diff --git a/tests/st/nopnode/test_eliminate_nopnode.py b/tests/st/runtime/nopnode/test_eliminate_nopnode.py similarity index 100% rename from tests/st/nopnode/test_eliminate_nopnode.py rename to tests/st/runtime/nopnode/test_eliminate_nopnode.py diff --git a/tests/st/nopnode/test_runtime_optimize.py b/tests/st/runtime/nopnode/test_runtime_optimize.py similarity index 100% rename from tests/st/nopnode/test_runtime_optimize.py rename to tests/st/runtime/nopnode/test_runtime_optimize.py diff --git a/tests/st/runtime/test_runtime_optimize.py b/tests/st/runtime/test_runtime_optimize.py new file mode 100644 index 00000000000..1ce3c3b7bf1 --- /dev/null +++ b/tests/st/runtime/test_runtime_optimize.py @@ -0,0 +1,194 @@ +# Copyright 2022 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import time +import numpy as np +import pytest +import mindspore +from mindspore import context, ops, nn, Tensor + + +class NetNonConcurrent(nn.Cell): + def __init__(self): + super().__init__() + self.relu = ops.ReLU() + self.add = ops.Add() + + def construct(self, input_x, input_x1, input_x2, input_x3): + output = self.relu(input_x) + for _ in range(50): + output = self.add(output, 1) + for _ in range(50): + output = self.add(output, 1) + for _ in range(50): + output = self.add(output, 1) + for _ in range(50): + output = self.add(output, 1) + return output + + +class NetNonConcurrentWithWhile(nn.Cell): + def __init__(self): + super().__init__() + self.relu = ops.ReLU() + self.add = ops.Add() + + def construct(self, input_x, input_loop, input_x1, input_loop1): + output = self.relu(input_x) + while input_loop < 4: + input_loop = input_loop + 1 + for _ in range(50): + output = self.add(output, 1) + return output + + +class NetConcurrent(nn.Cell): + def __init__(self): + super().__init__() + self.relu = ops.ReLU() + self.add = ops.Add() + + def construct(self, input_x1, input_x2, input_x3, input_x4): + output1 = self.relu(input_x1) + output2 = self.relu(input_x2) + output3 = self.relu(input_x3) + output4 = self.relu(input_x4) + for _ in range(50): + output1 = self.add(output1, 1) + for _ in range(50): + output2 = self.add(output2, 1) + for _ in range(50): + output3 = self.add(output3, 1) + for _ in range(50): + output4 = self.add(output4, 1) + + output = output1 + output2 + output3 + output4 + return output + + +class NetConcurrentWithWhile(nn.Cell): + def __init__(self): + super().__init__() + self.relu = ops.ReLU() + self.add = ops.Add() + + def construct(self, input_x1, input_loop1, input_x2, input_loop2): + output1 = self.relu(input_x1) + while input_loop1 < 2: + input_loop1 = input_loop1 + 1 + for _ in range(50): + output1 = self.add(output1, 1) + + output2 = self.relu(input_x2) + while input_loop2 < 2: + input_loop2 = input_loop2 + 1 + for _ in range(50): + output2 = self.add(output2, 1) + + output = output1 + output2 + return output + + +def run_multi_actor_fusion(net_name, net, input1, input2, input3, input4, expect_output): + context.set_context(mode=context.GRAPH_MODE) + total_time = 0 + total_count = 0 + for i in range(200): + time1 = time.time() + output = net(input1, input2, input3, input4).asnumpy() + time2 = time.time() + if i > 1: + total_count += 1 + total_time += (time2 - time1) * 1000 + assert (output == expect_output).all() + print(net_name + " avg_time:", total_time/total_count) + + +@pytest.mark.level1 +@pytest.mark.platform_x86_cpu +@pytest.mark.platform_x86_gpu_training +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_non_concurrent(): + """ + Feature: Multi actor fusion with non concurrent. + Description: Test the net which is non concurrent, that can trigger the function of multi actor fusion. + Expectation: The value and shape of output are the expected values. + """ + input_x = Tensor(np.ones(2), mindspore.float32) + net = NetNonConcurrent() + expect = np.array([201, 201]) + run_multi_actor_fusion("non_concurrent", net, input_x, input_x, input_x, input_x, expect) + + +@pytest.mark.level1 +@pytest.mark.platform_x86_cpu +@pytest.mark.platform_x86_gpu_training +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_non_concurrent_with_while(): + """ + Feature: Multi actor fusion with non concurrent and while. + Description: Test the net which is non concurrent with while, that can trigger the function of multi actor fusion. + Expectation: The value and shape of output are the expected values. + """ + input_x = Tensor(np.ones(2), mindspore.float32) + input_loop = Tensor([0], mindspore.float32) + net = NetNonConcurrentWithWhile() + expect = np.array([201, 201]) + run_multi_actor_fusion("non_concurrent_with_while", net, input_x, input_loop, input_x, input_loop, expect) + + +@pytest.mark.level1 +@pytest.mark.platform_x86_cpu +@pytest.mark.platform_x86_gpu_training +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_concurrent(): + """ + Feature: Multi actor fusion with concurrent. + Description: Test the net which is concurrent, that can trigger the function of multi actor fusion. + Expectation: The value and shape of output are the expected values. + """ + input1 = Tensor(np.ones(2), mindspore.float32) + input2 = Tensor(np.ones(2), mindspore.float32) + input3 = Tensor(np.ones(2), mindspore.float32) + input4 = Tensor(np.ones(2), mindspore.float32) + net = NetConcurrent() + expect = np.array([204, 204]) + run_multi_actor_fusion("concurrent", net, input1, input2, input3, input4, expect) + + +@pytest.mark.level1 +@pytest.mark.platform_x86_cpu +@pytest.mark.platform_x86_gpu_training +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_concurrent_with_while(): + """ + Feature: Multi actor fusion with concurrent and while. + Description: Test the net which is concurrent with while, that can trigger the function of multi actor fusion. + Expectation: The value and shape of output are the expected values. + """ + input1 = Tensor(np.ones(2), mindspore.float32) + input_loop1 = Tensor([0], mindspore.float32) + input2 = Tensor(np.ones(2), mindspore.float32) + input_loop2 = Tensor([0], mindspore.float32) + net = NetConcurrentWithWhile() + expect = np.array([202, 202]) + run_multi_actor_fusion("concurrent_with_while", net, input1, input_loop1, input2, input_loop2, expect)