forked from mindspore-Ecosystem/mindspore
Added accumulate_n functional api and test case.
This commit is contained in:
parent
2b33ed4ab1
commit
633921ef1f
|
@ -128,6 +128,7 @@ Element-by-Element Operations
|
|||
:template: classtemplate.rst
|
||||
|
||||
mindspore.ops.abs
|
||||
mindspore.ops.accumulate_n
|
||||
mindspore.ops.acos
|
||||
mindspore.ops.acosh
|
||||
mindspore.ops.add
|
||||
|
|
|
@ -120,6 +120,7 @@ from .parameter_func import (
|
|||
index_add,
|
||||
)
|
||||
from .math_func import (
|
||||
accumulate_n,
|
||||
addn,
|
||||
absolute,
|
||||
abs,
|
||||
|
|
|
@ -5677,6 +5677,42 @@ def remainder(x, y):
|
|||
out = x - tensor_floordiv(x, y) * y
|
||||
return out
|
||||
|
||||
def accumulate_n(*x):
|
||||
r"""
|
||||
Computes accumulation of all input tensors element-wise.
|
||||
|
||||
AccumulateNV2 is similar to AddN, but there is a significant difference
|
||||
among them: AccumulateNV2 will not wait for all of its inputs to be ready
|
||||
before summing. That is to say, AccumulateNV2 is able to save
|
||||
memory when inputs are ready at different time since the minimum temporary
|
||||
storage is proportional to the output size rather than the input size.
|
||||
|
||||
Inputs:
|
||||
- **x** (Union(tuple[Tensor], list[Tensor])) - The input tuple or list
|
||||
is made up of multiple tensors whose dtype is number to be added together.
|
||||
Each element of tuple or list should have the same shape.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and dtype as each entry of the `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `x` is neither tuple nor list.
|
||||
ValueError: If there is an input element with a different shape.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1, 2, 3]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([4, 5, 6]), mindspore.float32)
|
||||
>>> output = ops.accumulate_n(x, y, x, y)
|
||||
>>> print(output)
|
||||
[10. 14. 18.]
|
||||
"""
|
||||
|
||||
accumulate_ = _get_cache_prim(P.AccumulateNV2)()
|
||||
return accumulate_(x)
|
||||
|
||||
|
||||
__all__ = [
|
||||
'addn',
|
||||
|
@ -5816,6 +5852,7 @@ __all__ = [
|
|||
'frac',
|
||||
'kron',
|
||||
'rot90',
|
||||
'remainder'
|
||||
'remainder',
|
||||
'accumulate_n'
|
||||
]
|
||||
__all__.sort()
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import functional as F
|
||||
|
||||
# all cases tested against dchip
|
||||
|
||||
|
||||
def accumulate_n_forward_functional(nptype):
|
||||
input_x = Tensor(np.array([1, 2, 3]).astype(nptype))
|
||||
input_y = Tensor(np.array([4, 5, 6]).astype(nptype))
|
||||
|
||||
output = F.accumulate_n(input_x, input_y, input_x, input_y)
|
||||
expected = np.array([10., 14., 18.])
|
||||
np.testing.assert_array_almost_equal(output.asnumpy(), expected)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_accumulate_n_forward_float32_functional():
|
||||
"""
|
||||
Feature: test accumulate_n forward.
|
||||
Description: test float32 inputs.
|
||||
Expectation: the result match with numpy result
|
||||
"""
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
accumulate_n_forward_functional(np.float32)
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
accumulate_n_forward_functional(np.float32)
|
Loading…
Reference in New Issue