modify doc

This commit is contained in:
xumengjuan1 2022-04-02 11:16:36 +08:00
parent 46a614d37a
commit 62742ebcec
5 changed files with 6 additions and 6 deletions

View File

@ -113,7 +113,7 @@ Boost能够自动加速网络如减少BN/梯度冻结/累积梯度等。
其中:
- pca_mat (array) 维度(k*n)k是 *n_components*的大小n是权重的大小。
- pca_mat (array) 维度(k*n)k是 *n_components* 的大小n是权重的大小。
- bk (array) 维度(k*k)bk是拟牛顿法中的对称正定矩阵。
我们需要找到满足以下条件的m
@ -121,7 +121,7 @@ Boost能够自动加速网络如减少BN/梯度冻结/累积梯度等。
.. math::
new\_loss < old\_loss + delta\_loss
然后使用 *delta_grad*去更新模型的权重:
然后使用 *delta_grad* 去更新模型的权重:
.. math::

View File

@ -10,7 +10,7 @@
**参数:**
- **num_true** (int) - 每个训练样本的目标类数。
- **num_sampled** (int) - 随机采样的类数。sampled_candidates的shape将为 `num_sampled` 。如果`unique` 为True`num_sampled` 必须小于或等于 `range_max`
- **num_sampled** (int) - 随机采样的类数。sampled_candidates的shape将为 `num_sampled` 。如果 `unique` 为True`num_sampled` 必须小于或等于 `range_max`
- **unique** (bool) - 表示一个batch中的所有采样类是否唯一。
- **range_max** (int) - 可能的类数,该值必须是非负的。
- **seed** (int) - 随机种子该值必须是非负的。如果seed的值为0则seed的值将被随机生成的值替换。默认值0。

View File

@ -75,7 +75,7 @@ class TFRecordToMR:
source (str): TFRecord file to be transformed.
destination (str): MindRecord file path to transform into, ensure that no file with the same name
exists in the directory.
feature_dict (dict[str, `FixedLenFeature <https://www.tensorflow.org/api_docs/python/tf/io/FixedLenFeature>`_]): Dictionary
feature_dict (dict[str, `FixedLenFeature <https://www.tensorflow.org/api_docs/python/tf/io/FixedLenFeature>`_ ]): Dictionary
that states the feature type, and `VarLenFeature <https://www.tensorflow.org/api_docs/python/tf/io/VarLenFeature>`_
is not supported.
bytes_fields (list[str], optional): The bytes fields which are in `feature_dict` and can be images bytes.

View File

@ -273,7 +273,7 @@ def thor(net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0
:math:`\lambda` represents :math:`damping`, :math:`g_i` represents gradients of the i-th layer,
:math:`\otimes` represents Kronecker product, :math:`\gamma` represents 'learning rate'
Note:
Note:
When a parameter group is separated, 'weight_decay' of each group is applied to the corresponding parameter.
'weight_decay' in the optimizer is applied to arguments that do not have 'beta' or 'gamma' in their name
when the argument group is not separated.

View File

@ -46,7 +46,7 @@ def unique(x):
The shape is :math:`(N,*)` where :math:`*` means, any number of additional dimensions.
Returns:
Tuple, containing Tensor objects `(y, idx), `y` is a tensor with the
Tuple, containing Tensor objects (`y`, `idx`), `y` is a tensor with the
same type as `x`, and contains the unique elements in `x`.
`idx` is a tensor containing indices of elements in
the input corresponding to the output tensor, have the same shape with `x`.