forked from mindspore-Ecosystem/mindspore
modelzoo_widedeep_modify
This commit is contained in:
parent
2e002ab64c
commit
60fa330322
|
@ -26,7 +26,7 @@ def argparse_init():
|
|||
parser.add_argument("--batch_size", type=int, default=16000)
|
||||
parser.add_argument("--eval_batch_size", type=int, default=16000)
|
||||
parser.add_argument("--field_size", type=int, default=39)
|
||||
parser.add_argument("--vocab_size", type=int, default=184965)
|
||||
parser.add_argument("--vocab_size", type=int, default=200000)
|
||||
parser.add_argument("--emb_dim", type=int, default=80)
|
||||
parser.add_argument("--deep_layer_dim", type=int, nargs='+', default=[1024, 512, 256, 128])
|
||||
parser.add_argument("--deep_layer_act", type=str, default='relu')
|
||||
|
@ -50,7 +50,7 @@ class WideDeepConfig():
|
|||
self.batch_size = 16000
|
||||
self.eval_batch_size = 16000
|
||||
self.field_size = 39
|
||||
self.vocab_size = 184965
|
||||
self.vocab_size = 200000
|
||||
self.emb_dim = 80
|
||||
self.deep_layer_dim = [1024, 512, 256, 128]
|
||||
self.deep_layer_act = 'relu'
|
||||
|
|
|
@ -82,7 +82,7 @@ class DenseLayer(nn.Cell):
|
|||
"""
|
||||
|
||||
def __init__(self, input_dim, output_dim, weight_bias_init, act_str,
|
||||
keep_prob=0.7, scale_coef=1.0, convert_dtype=True, drop_out=False):
|
||||
keep_prob=0.7, use_activation=True, convert_dtype=True, drop_out=False):
|
||||
super(DenseLayer, self).__init__()
|
||||
weight_init, bias_init = weight_bias_init
|
||||
self.weight = init_method(
|
||||
|
@ -93,9 +93,7 @@ class DenseLayer(nn.Cell):
|
|||
self.bias_add = P.BiasAdd()
|
||||
self.cast = P.Cast()
|
||||
self.dropout = Dropout(keep_prob=keep_prob)
|
||||
self.mul = P.Mul()
|
||||
self.realDiv = P.RealDiv()
|
||||
self.scale_coef = scale_coef
|
||||
self.use_activation = use_activation
|
||||
self.convert_dtype = convert_dtype
|
||||
self.drop_out = drop_out
|
||||
|
||||
|
@ -110,20 +108,23 @@ class DenseLayer(nn.Cell):
|
|||
return act_func
|
||||
|
||||
def construct(self, x):
|
||||
x = self.act_func(x)
|
||||
if self.training and self.drop_out:
|
||||
x = self.dropout(x)
|
||||
x = self.mul(x, self.scale_coef)
|
||||
if self.convert_dtype:
|
||||
x = self.cast(x, mstype.float16)
|
||||
weight = self.cast(self.weight, mstype.float16)
|
||||
bias = self.cast(self.bias, mstype.float16)
|
||||
wx = self.matmul(x, weight)
|
||||
wx = self.bias_add(wx, bias)
|
||||
if self.use_activation:
|
||||
wx = self.act_func(wx)
|
||||
wx = self.cast(wx, mstype.float32)
|
||||
else:
|
||||
wx = self.matmul(x, self.weight)
|
||||
wx = self.realDiv(wx, self.scale_coef)
|
||||
output = self.bias_add(wx, self.bias)
|
||||
return output
|
||||
wx = self.bias_add(wx, self.bias)
|
||||
if self.use_activation:
|
||||
wx = self.act_func(wx)
|
||||
return wx
|
||||
|
||||
|
||||
class WideDeepModel(nn.Cell):
|
||||
|
@ -185,7 +186,7 @@ class WideDeepModel(nn.Cell):
|
|||
self.all_dim_list[5],
|
||||
self.weight_bias_init,
|
||||
self.deep_layer_act,
|
||||
convert_dtype=True, drop_out=config.dropout_flag)
|
||||
use_activation=False, convert_dtype=True, drop_out=config.dropout_flag)
|
||||
|
||||
self.gather_v2 = P.GatherV2()
|
||||
self.mul = P.Mul()
|
||||
|
@ -270,7 +271,7 @@ class TrainStepWrap(nn.Cell):
|
|||
sens (Number): The adjust parameter. Default: 1000.0
|
||||
"""
|
||||
|
||||
def __init__(self, network, sens=1000.0):
|
||||
def __init__(self, network, sens=1024.0):
|
||||
super(TrainStepWrap, self).__init__()
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
|
|
Loading…
Reference in New Issue