forked from mindspore-Ecosystem/mindspore
add nn api of MaxUnpool1d, 2d, 3d
This commit is contained in:
parent
c5bafc2bce
commit
60b2bce240
|
@ -199,6 +199,9 @@ Dropout层
|
||||||
mindspore.nn.MaxPool1d
|
mindspore.nn.MaxPool1d
|
||||||
mindspore.nn.MaxPool2d
|
mindspore.nn.MaxPool2d
|
||||||
mindspore.nn.MaxPool3d
|
mindspore.nn.MaxPool3d
|
||||||
|
mindspore.nn.MaxUnpool1d
|
||||||
|
mindspore.nn.MaxUnpool2d
|
||||||
|
mindspore.nn.MaxUnpool3d
|
||||||
|
|
||||||
填充层
|
填充层
|
||||||
--------------
|
--------------
|
||||||
|
|
|
@ -0,0 +1,43 @@
|
||||||
|
mindspore.nn.MaxUnpool1d
|
||||||
|
========================
|
||||||
|
|
||||||
|
.. py:class:: mindspore.nn.MaxUnpool1d(kernel_size, stride=0, padding=0, output_size=())
|
||||||
|
|
||||||
|
`Maxpool1d` 的部分逆过程。 `Maxpool1d` 不是完全可逆的,因为非最大值丢失。
|
||||||
|
`MaxUnpool1d` 以 `MaxPool1d` 的输出为输入,包括最大值的索引。在计算 `maxpool1d` 部分逆的过程中,非最大值设置为零。
|
||||||
|
支持的输入数据格式为 :math:`(N, C, H_{in})` 或 :math:`(C, H_{in})` ,输出数据的个格式为 :math:`(N, C, H_{out})`
|
||||||
|
或 :math:`(C, H_{out})` ,计算公式如下:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\begin{array}{ll} \\
|
||||||
|
H_{out} = (H{in} - 1) \times stride[0] - 2 \times padding[0] + kernel_size[0] \\
|
||||||
|
\end{array}
|
||||||
|
|
||||||
|
参数:
|
||||||
|
- **kernel_size** (Union[int, tuple[int]]) - 池化核尺寸大小。
|
||||||
|
- **stride** (Union[int, tuple[int]]) - 池化操作的移动步长,若取值为 '0' 或者 '(0)' , `stride` 值与 `kernel_size`
|
||||||
|
相同。默认值:None。
|
||||||
|
- **padding** (str) - 填充值。默认值:0。
|
||||||
|
- **output_size** (tuple[int]) - 输出shape,可选参数。默认值:()。
|
||||||
|
如果output_size为(),那么输出shape根据 `kernel_size` 、 `stride` 和 `padding` 计算得出。
|
||||||
|
如果output_size不为(),那么 `output_size` 必须满足格式 :math:`(N, C, H)` 或 :math:`(C, H)` ,取值范围需满足:
|
||||||
|
:math:`[(N, C, H_{out} - stride[0]), (N, C, H_{out} + stride[0])]` 。
|
||||||
|
|
||||||
|
输入:
|
||||||
|
- **x** (Tensor) - 待求逆的Tensor。shape为 :math:`(N, C, H_{in})` 或 :math:`(C, H_{in})` 。
|
||||||
|
- **indices** (Tensor) - 最大值的索引。shape必须与输入`x`相同。取值范围需满足 :math:`[0, H_{in} - 1]` 。
|
||||||
|
数据类型必须是int32或int64。
|
||||||
|
|
||||||
|
输出:
|
||||||
|
shape为 :math:`(N, C, H_{out})` 或 :math:`(C, H_{out})` 的Tensor,数据类型与输入 `x` 相同。
|
||||||
|
|
||||||
|
异常:
|
||||||
|
- **TypeError** - `x` 或 `indices` 的数据类型不支持。
|
||||||
|
- **TypeError** - `kernel_size` , `stride` 或 `padding` 既不是整数也不是tuple。
|
||||||
|
- **ValueError** - `stride` 或 `kernel_size` 的值不是非负的。
|
||||||
|
- **ValueError** - `x` 和 `indices` 的shape不一致。
|
||||||
|
- **ValueError** - `padding` 中的值有负数。
|
||||||
|
- **ValueError** - `output_size` 的长度不为0、2或3。
|
||||||
|
- **ValueError** - `output_size` 的取值与根据 `kernel_size, stride, padding` 计算得到的结果差距太大。
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,46 @@
|
||||||
|
mindspore.nn.MaxUnpool2d
|
||||||
|
========================
|
||||||
|
|
||||||
|
.. py:class:: mindspore.nn.MaxUnpool2d(kernel_size, stride=0, padding=0, output_size=())
|
||||||
|
|
||||||
|
`Maxpool2d` 的部分逆过程。 `Maxpool2d` 不是完全可逆的,因为非最大值丢失。
|
||||||
|
`MaxUnpool2d` 以 `MaxPool2d` 的输出为输入,包括最大值的索引。在计算 `maxpool2d` 部分逆的过程中,非最大值设置为零。
|
||||||
|
支持的输入数据格式为 :math:`(N, C, H_{in}, W_{in})` 或 :math:`(C, H_{in}, W_{in})` ,
|
||||||
|
输出数据的个格式为 :math:`(N, C, H_{out}, W_{out})` 或 :math:`(C, H_{out}, W_{out})` ,计算公式如下:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\begin{array}{ll} \\
|
||||||
|
H_{out} = (H{in} - 1) \times stride[0] - 2 \times padding[0] + kernel_size[0] \\
|
||||||
|
W_{out} = (W{in} - 1) \times stride[1] - 2 \times padding[1] + kernel_size[1] \\
|
||||||
|
\end{array}
|
||||||
|
|
||||||
|
参数:
|
||||||
|
- **kernel_size** (Union[int, tuple[int]]) - 池化核尺寸大小。int类型表示池化核的长宽相同。
|
||||||
|
tuple类型中的两个值分别代表池化核的长和宽。
|
||||||
|
- **stride** (Union[int, tuple[int]]) - 池化操作的移动步长,int类型表示长宽方向的移动步长相同。
|
||||||
|
tuple中的两个值分别代表长宽方向移动的步长。若取值为 '0' 或者 '(0, 0)',`stride` 值与 `kernel_size` 相同。
|
||||||
|
默认值:None。
|
||||||
|
- **padding** (str) - 填充值。默认值:0。若为int类型,则长宽方向的填充大小相同,均为 `padding` 。
|
||||||
|
若为tuple类型,则tuple中的两个值分别代表长宽方向填充的大小。
|
||||||
|
- **output_size** (tuple[int]) - 输出shape,可选参数。默认值:()。
|
||||||
|
如果output_size为(),那么输出shape根据 `kernel_size` 、 `stride` 和 `padding` 计算得出。
|
||||||
|
如果output_size不为(),那么 `output_size` 必须满足格式 :math:`(N, C, H, W)` 或 :math:`(C, H, W)` ,取值范围需满足:
|
||||||
|
:math:`[(N, C, H_{out} - stride[0], W_{out} - stride[1]), (N, C, H_{out} + stride[0], W_{out} + stride[1])]`。
|
||||||
|
|
||||||
|
输入:
|
||||||
|
- **x** (Tensor) - 待求逆的Tensor。shape为 :math:`(N, C, H_{in}, W_{in})` 或 :math:`(C, H_{in}, W_{in})` 。
|
||||||
|
- **indices** (Tensor) - 最大值的索引。shape必须与输入 `x` 相同。取值范围需满足 :math:`[0, H_{in} \times W_{in} - 1]` 。
|
||||||
|
数据类型必须是int32或int64。
|
||||||
|
|
||||||
|
输出:
|
||||||
|
shape为 :math:`(N, C, H_{out}, W_{out})` 或 :math:`(C, H_{out}, W_{out})` 的Tensor,数据类型与输入 `x` 相同。
|
||||||
|
|
||||||
|
异常:
|
||||||
|
- **TypeError** - `x` 或 `indices` 的数据类型不支持。
|
||||||
|
- **TypeError** - `kernel_size` , `stride` 或 `padding` 既不是整数也不是tuple。
|
||||||
|
- **TypeError** - `kernel_size` , `stride` 或 `padding` 为tuple时长度不等于2。
|
||||||
|
- **ValueError** - `stride` , `kernel_size` 或 `padding` 的值不是非负的。
|
||||||
|
- **ValueError** - `x` 和 `indices` 的shape不一致。
|
||||||
|
- **ValueError** - `padding` 中的值有负数。
|
||||||
|
- **ValueError** - `output_size` 的长度不为0、3或4。
|
||||||
|
- **ValueError** - `output_size` 的取值与根据 `kernel_size, stride, padding` 计算得到的结果差距太大。
|
|
@ -0,0 +1,50 @@
|
||||||
|
mindspore.nn.MaxUnpool3d
|
||||||
|
========================
|
||||||
|
|
||||||
|
.. py:class:: mindspore.nn.MaxUnpool3d(kernel_size, stride=0, padding=0, output_size=())
|
||||||
|
|
||||||
|
`Maxpool3d` 的部分逆过程。 `Maxpool3d` 不是完全可逆的,因为非最大值丢失。
|
||||||
|
`MaxUnpool3d` 以 `MaxPool3d` 的输出为输入,包括最大值的索引。在计算 `maxpool3d` 部分逆的过程中,非最大值设置为零。
|
||||||
|
支持的输入数据格式为 :math:`(N, C, D_{in}, H_{in}, W_{in})` 或 :math:`(C, D_{in}, H_{in}, W_{in})` ,
|
||||||
|
输出数据的个格式为 :math:`(N, C, D_{out}, H_{out}, W_{out})` 或 :math:`(C, D_{out}, H_{out}, W_{out})` ,计算公式如下:
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\begin{array}{ll} \\
|
||||||
|
D_{out} = (D{in} - 1) \times stride[0] - 2 \times padding[0] + kernel_size[0] \\
|
||||||
|
H_{out} = (H{in} - 1) \times stride[1] - 2 \times padding[1] + kernel_size[1] \\
|
||||||
|
W_{out} = (W{in} - 1) \times stride[2] - 2 \times padding[2] + kernel_size[2] \\
|
||||||
|
\end{array}
|
||||||
|
|
||||||
|
参数:
|
||||||
|
- **kernel_size** (Union[int, tuple[int]]) - 池化核尺寸大小。int类型表示池化核的深度、长和宽相同。
|
||||||
|
tuple类型中的三个值分别代表池化核的深度、长和宽。
|
||||||
|
- **stride** (Union[int, tuple[int]]) - 池化操作的移动步长,int类型表示深度、长和宽方向的移动步长相同。
|
||||||
|
tuple中的三个值分别代表深度、长和宽方向移动的步长。若取值为 '0' 或者 '(0, 0, 0)' , `stride` 值与 `kernel_size` 相同。
|
||||||
|
默认值:None。
|
||||||
|
- **padding** (str) - 填充值。默认值:0。若为int类型,则深度、长和宽方向的填充大小相同,均为 `padding` 。
|
||||||
|
若为tuple类型,则tuple中的三个值分别代表深度、长和宽方向填充的大小。
|
||||||
|
- **output_size** (tuple[int]) - 输出shape,可选参数。默认值:()。
|
||||||
|
如果output_size为(),那么输出shape根据 `kernel_size` 、 `stride` 和 `padding` 计算得出。
|
||||||
|
如果output_size不为(),那么 `output_size` 必须满足格式 :math:`(N, C, D, H, W)` 或 :math:`(C, D, H, W)` ,
|
||||||
|
取值范围需满足:
|
||||||
|
:math:`[(N, C, D_{out} - stride[0], H_{out} - stride[1], W_{out} - stride[2]), (N, C, D_{out} + stride[0], H_{out} + stride[1], W_{out} + stride[2])]` 。
|
||||||
|
|
||||||
|
输入:
|
||||||
|
- **x** (Tensor) - 待求逆的Tensor。shape为 :math:`(N, C, D_{in}, H_{in}, W_{in})` 或
|
||||||
|
:math:`(C, D_{in}, H_{in}, W_{in})` 。
|
||||||
|
- **indices** (Tensor) - 最大值的索引。shape必须与输入 `x` 相同。取值范围需满足
|
||||||
|
:math:`[0, D_{in} \times H_{in} \times W_{in} - 1]` 。数据类型必须是int32或int64。
|
||||||
|
|
||||||
|
输出:
|
||||||
|
shape为 :math:`(N, C, D_{out}, H_{out}, W_{out})` 或 :math:`(C, D_{out}, H_{out}, W_{out})` 的Tensor,
|
||||||
|
数据类型与输入 `x` 相同。
|
||||||
|
|
||||||
|
异常:
|
||||||
|
- **TypeError** - `x` 或 `indices` 的数据类型不支持。
|
||||||
|
- **TypeError** - `kernel_size` , `stride` 或 `padding` 既不是整数也不是tuple。
|
||||||
|
- **TypeError** - `kernel_size` , `stride` 或 `padding` 为tuple时长度不等于3。
|
||||||
|
- **ValueError** - `stride` , `kernel_size` 或 `padding` 的值不是非负的。
|
||||||
|
- **ValueError** - `x` 和 `indices` 的shape不一致。
|
||||||
|
- **ValueError** - `padding` 中的值有负数。
|
||||||
|
- **ValueError** - `output_size` 的长度不为0、4或5。
|
||||||
|
- **ValueError** - `output_size` 的取值与根据 `kernel_size, stride, padding` 计算得到的结果差距太大。
|
|
@ -199,6 +199,9 @@ Pooling Layer
|
||||||
mindspore.nn.MaxPool1d
|
mindspore.nn.MaxPool1d
|
||||||
mindspore.nn.MaxPool2d
|
mindspore.nn.MaxPool2d
|
||||||
mindspore.nn.MaxPool3d
|
mindspore.nn.MaxPool3d
|
||||||
|
mindspore.nn.MaxUnpool1d
|
||||||
|
mindspore.nn.MaxUnpool2d
|
||||||
|
mindspore.nn.MaxUnpool3d
|
||||||
|
|
||||||
Padding Layer
|
Padding Layer
|
||||||
-------------
|
-------------
|
||||||
|
|
|
@ -26,11 +26,12 @@ from mindspore.ops.operations.nn_ops import AdaptiveMaxPool2D
|
||||||
from mindspore.ops.operations.nn_ops import AdaptiveMaxPool3D, AdaptiveAvgPool3D
|
from mindspore.ops.operations.nn_ops import AdaptiveMaxPool3D, AdaptiveAvgPool3D
|
||||||
from mindspore.ops.operations.nn_ops import FractionalMaxPoolWithFixedKsize, FractionalMaxPool3DWithFixedKsize
|
from mindspore.ops.operations.nn_ops import FractionalMaxPoolWithFixedKsize, FractionalMaxPool3DWithFixedKsize
|
||||||
from mindspore.ops.operations.nn_ops import MaxPool3DWithArgmax
|
from mindspore.ops.operations.nn_ops import MaxPool3DWithArgmax
|
||||||
|
from mindspore.ops.operations.nn_ops import MaxUnpool2D, MaxUnpool3D
|
||||||
from mindspore.nn.cell import Cell
|
from mindspore.nn.cell import Cell
|
||||||
|
|
||||||
__all__ = ['AvgPool3d', 'MaxPool3d', 'AvgPool2d', 'MaxPool2d', 'AvgPool1d', 'MaxPool1d', 'FractionalMaxPool2d',
|
__all__ = ['AvgPool3d', 'MaxPool3d', 'AvgPool2d', 'MaxPool2d', 'AvgPool1d', 'MaxPool1d', 'FractionalMaxPool2d',
|
||||||
'FractionalMaxPool3d', 'AdaptiveAvgPool1d', 'AdaptiveMaxPool1d', 'AdaptiveMaxPool2d', 'AdaptiveMaxPool3d',
|
'FractionalMaxPool3d', 'AdaptiveAvgPool1d', 'AdaptiveMaxPool1d', 'AdaptiveMaxPool2d', 'AdaptiveMaxPool3d',
|
||||||
'AdaptiveAvgPool2d', 'AdaptiveAvgPool3d']
|
'AdaptiveAvgPool2d', 'AdaptiveAvgPool3d', 'MaxUnpool1d', 'MaxUnpool2d', 'MaxUnpool3d']
|
||||||
|
|
||||||
|
|
||||||
class _PoolNd(Cell):
|
class _PoolNd(Cell):
|
||||||
|
@ -1327,3 +1328,320 @@ class FractionalMaxPool3d(Cell):
|
||||||
if self.return_indices:
|
if self.return_indices:
|
||||||
return output
|
return output
|
||||||
return output[0]
|
return output[0]
|
||||||
|
|
||||||
|
|
||||||
|
class MaxUnpool1d(Cell):
|
||||||
|
r"""
|
||||||
|
Computes a partial inverse of MaxPool1d.
|
||||||
|
|
||||||
|
MaxPool1d is not fully invertible, since the non-maximal values are lost.
|
||||||
|
|
||||||
|
MaxUnpool1d takes in as input the output of MaxPool1d including the indices of the maximal values
|
||||||
|
and computes a partial inverse in which all non-maximal values are set to zero. Typically the input
|
||||||
|
is of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`, and the output is of shape :math:`(N, C, H_{out}`
|
||||||
|
or :math:`(C, H_{out}`. The operation is as follows.
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\begin{array}{ll} \\
|
||||||
|
H_{out} = (H{in} - 1) \times stride[0] - 2 \times padding[0] + kernel_size[0] \\
|
||||||
|
\end{array}
|
||||||
|
|
||||||
|
Args:
|
||||||
|
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the maximum value.
|
||||||
|
stride (Union[int, tuple[int]]): The distance of kernel moving,
|
||||||
|
If stride is 0 or (0), then stride equal to kernel_size. Default: None.
|
||||||
|
padding (Union[int, tuple[int]]): The pad value to be filled. Default: 0.
|
||||||
|
output_size (tuple[int]) : The target output size is an optional input. Default: ().
|
||||||
|
If output_size == (), then the shape of output computed by kernel_size, stride and padding.
|
||||||
|
If output_size != (), then output_size must be :math:`(N, C, H)` or
|
||||||
|
:math:`(C, H)` and output_size must belong to
|
||||||
|
:math:`[(N, C, H_{out} - stride[0]), (N, C, H_{out} + stride[0])]`.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **x** (Tensor) - The input Tensor to invert.
|
||||||
|
Tensor of shape :math:`(N, C, H_{in})` or :math:`(C, H_{in})`.
|
||||||
|
- **indices** (Tensor) - Max values' index represented by the indices.
|
||||||
|
Tensor of shape must be same with input 'x'.
|
||||||
|
Values of indices must belong to :math:`[0, H_{in} - 1]`.
|
||||||
|
Data type must be in int32 or int64.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tensor, with shape :math:`(N, C, H_{out})` or :math:`(C, H_{out})`,
|
||||||
|
with the same data type with `x`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
TypeError: If data type of `x` or `indices` is not supported.
|
||||||
|
TypeError: If `kernel_size`, `stride` or `padding` is neither int nor tuple.
|
||||||
|
ValueError: If numbers in `stride` (also support 0 and (0)) or `kernel_size` is not positive.
|
||||||
|
ValueError: If the shape of `x` and `indices` are not equal.
|
||||||
|
ValueError: If numbers in `padding` is negative.
|
||||||
|
ValueError: If `output_size` whose length is neither 0, 2 or 3.
|
||||||
|
ValueError: If `output_size` is not close to output size
|
||||||
|
computed by attr `kernel_size, stride, padding`.
|
||||||
|
|
||||||
|
Supported Platforms:
|
||||||
|
``CPU`` ``GPU``
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> x = Tensor(np.array([[2, 4, 6, 8]]).astype(np.float32))
|
||||||
|
>>> indices = Tensor(np.array([[1, 3, 5, 7]]).astype(np.int64))
|
||||||
|
>>> maxunpool1d = nn.MaxUnpool1d(kernel_size =2, stride=2, padding=0)
|
||||||
|
>>> output = maxunpool1d(x, indices)
|
||||||
|
>>> print(output.asnumpy())
|
||||||
|
[[0, 2, 0, 4, 0, 6, 0, 8]]
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, kernel_size, stride=None, padding=0, output_size=()):
|
||||||
|
"""Initialize MaxUnpool1d."""
|
||||||
|
super(MaxUnpool1d, self).__init__()
|
||||||
|
if len(output_size) == 2:
|
||||||
|
output_size = (1,) + output_size
|
||||||
|
if not stride:
|
||||||
|
stride = 0
|
||||||
|
self.max_unpool2d = MaxUnpool2D(ksize=(kernel_size, 1), strides=(stride, 1), pads=(padding, 0),
|
||||||
|
output_shape=output_size, data_format="NCHW")
|
||||||
|
self.shape = P.Shape()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@constexpr
|
||||||
|
def _check_input_dim(x_shape, indices_shape, cls_name):
|
||||||
|
x_dim = len(x_shape)
|
||||||
|
if x_shape != indices_shape:
|
||||||
|
raise ValueError(f"For '{cls_name}', the x shape and indices shape must be equal, but got input "
|
||||||
|
f"shape {x_shape} and indices shape {indices_shape}.")
|
||||||
|
if x_dim not in (2, 3):
|
||||||
|
raise ValueError(f"For '{cls_name}', the x shape must have 2 or 3 dims, but got {x_dim}.")
|
||||||
|
return x_dim
|
||||||
|
|
||||||
|
def construct(self, x, indices):
|
||||||
|
x_shape = self.shape(x)
|
||||||
|
indices_shape = self.shape(indices)
|
||||||
|
x_dim = self._check_input_dim(x_shape, indices_shape, self.cls_name)
|
||||||
|
if x_dim == 2:
|
||||||
|
x = x.expand_dims(axis=0)
|
||||||
|
indices = indices.expand_dims(axis=0)
|
||||||
|
x = x.expand_dims(axis=3)
|
||||||
|
indices = indices.expand_dims(axis=3)
|
||||||
|
out = self.max_unpool2d(x, indices)
|
||||||
|
out = out.squeeze(-1)
|
||||||
|
out = out.squeeze(0)
|
||||||
|
else:
|
||||||
|
x = x.expand_dims(axis=3)
|
||||||
|
indices = indices.expand_dims(axis=3)
|
||||||
|
out = self.max_unpool2d(x, indices)
|
||||||
|
out = out.squeeze(-1)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class MaxUnpool2d(Cell):
|
||||||
|
r"""
|
||||||
|
Computes a partial inverse of Maxpool2d.
|
||||||
|
|
||||||
|
MaxPool2d is not fully invertible, since the non-maximal values are lost.
|
||||||
|
|
||||||
|
MaxUnpool2d takes in as input the output of Maxpool2d including the indices of the maximal values
|
||||||
|
and computes a partial inverse in which all non-maximal values are set to zero. Typically the input
|
||||||
|
is of shape :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`, and the output is of
|
||||||
|
shape :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`. The operation is as follows.
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\begin{array}{ll} \\
|
||||||
|
H_{out} = (H{in} - 1) \times stride[0] - 2 \times padding[0] + kernel_size[0] \\
|
||||||
|
W_{out} = (W{in} - 1) \times stride[1] - 2 \times padding[1] + kernel_size[1] \\
|
||||||
|
\end{array}
|
||||||
|
|
||||||
|
Args:
|
||||||
|
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the maximum value,
|
||||||
|
an int number that represents height and width of the kernel, or a tuple
|
||||||
|
of two int numbers that represent height and width respectively.
|
||||||
|
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
|
the height and width of movement are both stride, or a tuple of two int numbers that
|
||||||
|
represent height and width of movement respectively.
|
||||||
|
If stride is 0 or (0, 0), then stride equal to kernel_size. Default: None.
|
||||||
|
padding (Union[int, tuple[int]]): The pad value to be filled. Default: 0. If `padding` is an integer,
|
||||||
|
the paddings of height and width are the same, equal to padding. If `padding` is a tuple of two
|
||||||
|
integers, the padding of height and width equal to padding[0] and padding[1] correspondingly.
|
||||||
|
output_size (tuple[int]) : The target output size is an optional parameter. Default: ().
|
||||||
|
If output_size == (), then the shape of output computed by kernel_size, stride and padding.
|
||||||
|
If output_size != (), then output_size must be :math:`(N, C, H, W)` and output_size must belong to
|
||||||
|
:math:`[(N, C, H_{out} - stride[0], W_{out} - stride[1]),
|
||||||
|
(N, C, H_{out} + stride[0], W_{out} + stride[1])]`.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **x** (Tensor) - The input Tensor to invert.
|
||||||
|
Tensor of shape :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
||||||
|
- **indices** (Tensor) - Max values' index represented by the indices.
|
||||||
|
Tensor of shape must be same with input 'x'.
|
||||||
|
Values of indices must belong to :math:`[0, H_{in} \times W_{in} - 1]`.
|
||||||
|
Data type must be in int32 or int64.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tensor, with shape :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`,
|
||||||
|
with the same data type with `x`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
TypeError: If data type of `x` or `indices` is not supported.
|
||||||
|
TypeError: If `kernel_size`, `stride` or `padding` is neither int nor tuple.
|
||||||
|
ValueError: If numbers in `stride` (also support 0 and (0, 0)) or `kernel_size` is not positive.
|
||||||
|
ValueError: If the shape of `x` and `indices` are not equal.
|
||||||
|
ValueError: If numbers in `padding` is negative.
|
||||||
|
ValueError: If `kernel_size`, `stride` or `padding` is a tuple whose length is not equal to 2.
|
||||||
|
ValueError: If `output_size` whose length is neither 0, 3 or 4.
|
||||||
|
ValueError: If `output_size` is not close to output size
|
||||||
|
computed by attr `kernel_size, stride, padding`.
|
||||||
|
|
||||||
|
Supported Platforms:
|
||||||
|
``CPU`` ``GPU``
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> x = Tensor(np.array([[[[0, 1], [8, 9]]]]).astype(np.float32))
|
||||||
|
>>> indices = Tensor(np.array([[[[0, 1], [2, 3]]]]).astype(np.int64))
|
||||||
|
>>> maxunpool2d = nn.MaxUnpool2d(kernel_size=1, stride=1, padding=0)
|
||||||
|
>>> output = maxunpool2d(x, indices)
|
||||||
|
>>> print(output.asnumpy())
|
||||||
|
[[[[0. 1.]
|
||||||
|
[8. 9.]]]]
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, kernel_size, stride=None, padding=0, output_size=()):
|
||||||
|
"""Initialize MaxUnpool2d."""
|
||||||
|
super(MaxUnpool2d, self).__init__()
|
||||||
|
if len(output_size) == 3:
|
||||||
|
output_size = (1,) + output_size
|
||||||
|
if not stride:
|
||||||
|
stride = 0
|
||||||
|
self.max_unpool2d = MaxUnpool2D(ksize=kernel_size, strides=stride, pads=padding, output_shape=output_size,
|
||||||
|
data_format="NCHW")
|
||||||
|
self.shape = P.Shape()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@constexpr
|
||||||
|
def _check_input_dim(x_shape, indices_shape, cls_name):
|
||||||
|
x_dim = len(x_shape)
|
||||||
|
if x_shape != indices_shape:
|
||||||
|
raise ValueError(f"For '{cls_name}', the x shape and indices shape must be equal, but got input "
|
||||||
|
f"shape {x_shape} and indices shape {indices_shape}.")
|
||||||
|
if x_dim not in (3, 4):
|
||||||
|
raise ValueError(f"For '{cls_name}', the x shape must have 3 or 4 dims, but got {x_dim}.")
|
||||||
|
return x_dim
|
||||||
|
|
||||||
|
def construct(self, x, indices):
|
||||||
|
x_shape = self.shape(x)
|
||||||
|
indices_shape = self.shape(indices)
|
||||||
|
x_dim = self._check_input_dim(x_shape, indices_shape, self.cls_name)
|
||||||
|
if x_dim == 3:
|
||||||
|
x = x.expand_dims(axis=0)
|
||||||
|
indices = indices.expand_dims(axis=0)
|
||||||
|
out = self.max_unpool2d(x, indices)
|
||||||
|
out = out.squeeze(0)
|
||||||
|
else:
|
||||||
|
out = self.max_unpool2d(x, indices)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class MaxUnpool3d(Cell):
|
||||||
|
r"""
|
||||||
|
Computes a partial inverse of MaxPool3d.
|
||||||
|
|
||||||
|
MaxPool3d is not fully invertible, since the non-maximal values are lost.
|
||||||
|
|
||||||
|
MaxUnpool3d takes in as input the output of MaxPool3d including the indices of the maximal
|
||||||
|
values and computes a partial inverse in which all non-maximal values are set to zero.
|
||||||
|
Typically the input is of shape :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`,
|
||||||
|
and the output is of shape :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`.
|
||||||
|
The operation is as follows.
|
||||||
|
|
||||||
|
.. math::
|
||||||
|
\begin{array}{ll} \\
|
||||||
|
D_{out} = (D{in} - 1) \times stride[0] - 2 \times padding[0] + kernel_size[0] \\
|
||||||
|
H_{out} = (H{in} - 1) \times stride[1] - 2 \times padding[1] + kernel_size[1] \\
|
||||||
|
W_{out} = (W{in} - 1) \times stride[2] - 2 \times padding[2] + kernel_size[2] \\
|
||||||
|
\end{array}
|
||||||
|
|
||||||
|
Args:
|
||||||
|
kernel_size (Union[int, tuple[int]]): The size of kernel used to take the maximum value,
|
||||||
|
an int number that represents depth, height and width of the kernel, or a tuple
|
||||||
|
of three int numbers that represent depth, height and width respectively.
|
||||||
|
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
|
||||||
|
the depth, height and width of movement are both stride, or a tuple of three int numbers that
|
||||||
|
represent depth, height and width of movement respectively.
|
||||||
|
If stride is 0 or (0, 0, 0), then stride equal to kernel_size. Default: None.
|
||||||
|
padding (Union[int, tuple[int]]): The pad value to be filled. Default: 0. If `padding` is an integer,
|
||||||
|
the paddings of depth, height and width are the same, equal to padding. If `padding` is a tuple of three
|
||||||
|
integers, the padding of depth, height and width equal to padding[0], padding[1] and padding[2]
|
||||||
|
correspondingly.
|
||||||
|
output_size (tuple[int]) : The target output size is an optional input. Default: ().
|
||||||
|
If output_size == (), then the shape of output computed by kernel_size, stride and padding.
|
||||||
|
If output_size != (), then output_size must be :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)` and
|
||||||
|
output_size must belong to
|
||||||
|
:math:`[(N, C, D_{out} - stride[0], H_{out} - stride[1], W_{out} - stride[2]),
|
||||||
|
(N, C, D_{out} + stride[0], H_{out} + stride[1], W_{out} + stride[2])]`.
|
||||||
|
|
||||||
|
Inputs:
|
||||||
|
- **x** (Tensor) - The input Tensor to invert.
|
||||||
|
Tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
||||||
|
- **indices** (Tensor) - Max values' index represented by the indices.
|
||||||
|
Tensor of shape must be same with input 'x'.
|
||||||
|
Values of indices must belong to :math:`[0, D_{in} \times H_{in} \times W_{in} - 1]`.
|
||||||
|
Data type must be in int32 or int64.
|
||||||
|
|
||||||
|
Outputs:
|
||||||
|
Tensor, with shape :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
|
||||||
|
with the same data type with `x`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
TypeError: If data type of `x` or `indices` is not supported.
|
||||||
|
TypeError: If `kernel_size`, `stride` or `padding` is neither int nor tuple.
|
||||||
|
ValueError: If numbers in `stride` (also support 0 and (0, 0, 0)) or `kernel_size` is not positive.
|
||||||
|
ValueError: If numbers in `padding` is negative.
|
||||||
|
ValueError: If `kernel_size`, `stride` or `padding` is a tuple whose length is not equal to 3.
|
||||||
|
ValueError: If `output_size` whose length is neither 0, 4 or 5.
|
||||||
|
ValueError: If `output_size` is not close to output size
|
||||||
|
computed by attr `kernel_size, stride, padding`.
|
||||||
|
|
||||||
|
Supported Platforms:
|
||||||
|
``CPU`` ``GPU``
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> x = Tensor(np.array([[[[[0, 1], [8, 9]]]]]).astype(np.float32))
|
||||||
|
>>> indices= Tensor(np.array([[[[[0, 1], [2, 3]]]]]).astype(np.int64))
|
||||||
|
>>> maxunpool3d = nn.MaxUnpool3d(kernel_size=1, stride=1, padding=0)
|
||||||
|
>>> output = maxunpool3d(x, indices)
|
||||||
|
>>> print(output.asnumpy())
|
||||||
|
[[[[[0. 1.]
|
||||||
|
[8. 9.]]]]]
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, kernel_size, stride=None, padding=0, output_size=()):
|
||||||
|
super(MaxUnpool3d, self).__init__()
|
||||||
|
if len(output_size) == 4:
|
||||||
|
output_size = (1,) + output_size
|
||||||
|
if not stride:
|
||||||
|
stride = 0
|
||||||
|
self.max_unpool3d = MaxUnpool3D(ksize=kernel_size, strides=stride, pads=padding, output_shape=output_size,
|
||||||
|
data_format="NCDHW")
|
||||||
|
self.shape = P.Shape()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
@constexpr
|
||||||
|
def _check_input_dim(x_shape, indices_shape, cls_name):
|
||||||
|
x_dim = len(x_shape)
|
||||||
|
if x_shape != indices_shape:
|
||||||
|
raise ValueError(f"For '{cls_name}', the x shape and indices shape must be equal, but got input "
|
||||||
|
f"shape {x_shape} and indices shape {indices_shape}.")
|
||||||
|
if x_dim not in (4, 5):
|
||||||
|
raise ValueError(f"For '{cls_name}', the x shape must have 4 or 5 dims, but got {x_dim}.")
|
||||||
|
return x_dim
|
||||||
|
|
||||||
|
def construct(self, x, indices):
|
||||||
|
x_shape = self.shape(x)
|
||||||
|
indices_shape = self.shape(indices)
|
||||||
|
x_dim = self._check_input_dim(x_shape, indices_shape, self.cls_name)
|
||||||
|
if x_dim == 4:
|
||||||
|
x = x.expand_dims(axis=0)
|
||||||
|
indices = indices.expand_dims(axis=0)
|
||||||
|
out = self.max_unpool3d(x, indices)
|
||||||
|
out = out.squeeze(0)
|
||||||
|
else:
|
||||||
|
out = self.max_unpool3d(x, indices)
|
||||||
|
return out
|
||||||
|
|
|
@ -0,0 +1,50 @@
|
||||||
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
import mindspore.context as context
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self, kernel_size, stride=0, padding=0, output_size=()):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.max_unpool1d = nn.MaxUnpool1d(kernel_size, stride, padding, output_size)
|
||||||
|
|
||||||
|
def construct(self, x, indices):
|
||||||
|
return self.max_unpool1d(x, indices)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.platform_arm_cpu
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
|
||||||
|
def test_max_unpool1d_normal(mode):
|
||||||
|
"""
|
||||||
|
Feature: max_unpool1d
|
||||||
|
Description: Verify the result of MaxUnpool1d
|
||||||
|
Expectation: success
|
||||||
|
"""
|
||||||
|
context.set_context(mode=mode)
|
||||||
|
x = Tensor(np.array([[2, 4, 6, 8]]).astype(np.float32))
|
||||||
|
incices = Tensor(np.array([[1, 3, 5, 7]]).astype(np.int64))
|
||||||
|
|
||||||
|
net = Net(kernel_size=2, stride=2, padding=0)
|
||||||
|
output = net(x, incices).asnumpy()
|
||||||
|
expect = np.array([[0, 2, 0, 4, 0, 6, 0, 8]]).astype(np.float32)
|
||||||
|
assert np.allclose(output, expect, rtol=0.0001)
|
|
@ -0,0 +1,53 @@
|
||||||
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
import mindspore.context as context
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self, kernel_size, stride=0, padding=0, output_size=()):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.max_unpool2d = nn.MaxUnpool2d(kernel_size, stride, padding, output_size)
|
||||||
|
|
||||||
|
def construct(self, x, indices):
|
||||||
|
return self.max_unpool2d(x, indices)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.platform_arm_cpu
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
|
||||||
|
def test_max_unpool2d_normal(mode):
|
||||||
|
"""
|
||||||
|
Feature: max_unpool2d
|
||||||
|
Description: Verify the result of MaxUnpool2d
|
||||||
|
Expectation: success
|
||||||
|
"""
|
||||||
|
context.set_context(mode=mode)
|
||||||
|
x = Tensor(np.array([[[6., 8.],
|
||||||
|
[14., 16.]]]).astype(np.float32))
|
||||||
|
incices = Tensor(np.array([[[5, 7], [13, 15]]]).astype(np.int64))
|
||||||
|
net = Net(kernel_size=2, stride=2, padding=0)
|
||||||
|
output = net(x, incices).asnumpy()
|
||||||
|
expected_output = np.array([[[0., 0., 0., 0.],
|
||||||
|
[0, 6., 0., 8.],
|
||||||
|
[0., 0., 0., 0.],
|
||||||
|
[0., 14., 0., 16.]]]).astype(np.float32)
|
||||||
|
assert np.allclose(output, expected_output, rtol=0.0001)
|
|
@ -0,0 +1,57 @@
|
||||||
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
import mindspore.context as context
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self, kernel_size, stride=0, padding=0, output_size=()):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.max_unpool3d = nn.MaxUnpool3d(kernel_size, stride, padding, output_size)
|
||||||
|
|
||||||
|
def construct(self, x, indices):
|
||||||
|
return self.max_unpool3d(x, indices)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_cpu
|
||||||
|
@pytest.mark.platform_arm_cpu
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
|
||||||
|
def test_max_unpool3d_normal(mode):
|
||||||
|
"""
|
||||||
|
Feature: max_unpool3d
|
||||||
|
Description: Verify the result of MaxUnpool3d
|
||||||
|
Expectation: success
|
||||||
|
"""
|
||||||
|
context.set_context(mode=mode)
|
||||||
|
x = Tensor(np.array([[[[[7.]]]], [[[[15.]]]]]), mindspore.float32)
|
||||||
|
incices = Tensor(np.array([[[[[7]]]], [[[[7]]]]]), mindspore.int64)
|
||||||
|
net = Net(kernel_size=2, stride=1, padding=0)
|
||||||
|
output = net(x, incices).asnumpy()
|
||||||
|
expect = np.array([[[[[0., 0.],
|
||||||
|
[0., 0.]],
|
||||||
|
[[0., 0.],
|
||||||
|
[0., 7.]]]],
|
||||||
|
[[[[0., 0.],
|
||||||
|
[0., 0.]],
|
||||||
|
[[0., 0.],
|
||||||
|
[0., 15.]]]]]).astype(np.float32)
|
||||||
|
assert np.allclose(output, expect, rtol=0.0001)
|
|
@ -120,3 +120,66 @@ def test_adaptive_max_pool_1d():
|
||||||
net = AdaptiveMaxPool1dNet(2)
|
net = AdaptiveMaxPool1dNet(2)
|
||||||
input_ = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32))
|
input_ = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32))
|
||||||
_cell_graph_executor.compile(net, input_)
|
_cell_graph_executor.compile(net, input_)
|
||||||
|
|
||||||
|
|
||||||
|
class MaxUnpool2dNet(nn.Cell):
|
||||||
|
def __init__(self, kernel_size, stride=0, padding=0, output_size=()):
|
||||||
|
super(MaxUnpool2dNet, self).__init__()
|
||||||
|
self.max_unpool2d = nn.MaxUnpool2d(kernel_size, stride, padding, output_size)
|
||||||
|
|
||||||
|
def construct(self, x, indices):
|
||||||
|
return self.max_unpool2d(x, indices)
|
||||||
|
|
||||||
|
|
||||||
|
class MaxUnpool1dNet(nn.Cell):
|
||||||
|
def __init__(self, kernel_size, stride=0, padding=0, output_size=()):
|
||||||
|
super(MaxUnpool1dNet, self).__init__()
|
||||||
|
self.max_unpool1d = nn.MaxUnpool1d(kernel_size, stride, padding, output_size)
|
||||||
|
|
||||||
|
def construct(self, x, indices):
|
||||||
|
return self.max_unpool1d(x, indices)
|
||||||
|
|
||||||
|
|
||||||
|
class MaxUnpool3dNet(nn.Cell):
|
||||||
|
def __init__(self, kernel_size, stride=0, padding=0, output_size=()):
|
||||||
|
super(MaxUnpool3dNet, self).__init__()
|
||||||
|
self.max_unpool3d = nn.MaxUnpool3d(kernel_size, stride, padding, output_size)
|
||||||
|
|
||||||
|
def construct(self, x, indices):
|
||||||
|
return self.max_unpool3d(x, indices)
|
||||||
|
|
||||||
|
|
||||||
|
def test_max_unpool2d_normal():
|
||||||
|
"""
|
||||||
|
Feature: max_unpool2d
|
||||||
|
Description: Verify the result of MaxUnpool2d
|
||||||
|
Expectation: success
|
||||||
|
"""
|
||||||
|
x = Tensor(np.array([[[6., 8.], [14., 16.]]]).astype(np.float32))
|
||||||
|
incices = Tensor(np.array([[[5, 7], [13, 15]]]).astype(np.int64))
|
||||||
|
net = MaxUnpool2dNet(kernel_size=2, stride=2, padding=0)
|
||||||
|
_cell_graph_executor.compile(net, x, incices)
|
||||||
|
|
||||||
|
|
||||||
|
def test_max_unpool1d_normal():
|
||||||
|
"""
|
||||||
|
Feature: max_unpool1d
|
||||||
|
Description: Verify the result of MaxUnpool1d
|
||||||
|
Expectation: success
|
||||||
|
"""
|
||||||
|
x = Tensor(np.array([[2, 4, 6, 8]]).astype(np.float32))
|
||||||
|
incices = Tensor(np.array([[1, 3, 5, 7]]).astype(np.int64))
|
||||||
|
net = MaxUnpool1dNet(kernel_size=2, stride=2, padding=0)
|
||||||
|
_cell_graph_executor.compile(net, x, incices)
|
||||||
|
|
||||||
|
|
||||||
|
def test_max_unpool3d_normal():
|
||||||
|
"""
|
||||||
|
Feature: max_unpool3d
|
||||||
|
Description: Verify the result of MaxUnpool3d
|
||||||
|
Expectation: success
|
||||||
|
"""
|
||||||
|
x = Tensor(np.array([[[[[7.]]]], [[[[15.]]]]]).astype(np.float32))
|
||||||
|
incices = Tensor(np.array([[[[[7]]]], [[[[7]]]]]).astype(np.int64))
|
||||||
|
net = MaxUnpool3dNet(kernel_size=2, stride=1, padding=0)
|
||||||
|
_cell_graph_executor.compile(net, x, incices)
|
||||||
|
|
Loading…
Reference in New Issue