fix tensor api doc

This commit is contained in:
huanghui 2021-12-16 20:24:57 +08:00
parent fa26ec66c8
commit 601597bd3f
2 changed files with 19 additions and 22 deletions

View File

@ -3,18 +3,18 @@ mindspore.Tensor
.. py:class:: mindspore.Tensor(input_data=None, dtype=None, shape=None, init=None)
用来存储数据。 继承自C++中的 `Tensor` 对象。有些函数是用C++实现的有些函数是用Python实现的
张量即存储多维数组n-dimensional array的数据结构
**参数:**
- **input_data** (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]) - 张量的输入数据
- **dtype** (:class:`mindspore.dtype`) - 输入数据应是在 `mindspore.dtype` 中定义的None、bool或numeric类型。该参数用于定义输出张量的数据类型。如果值为None则输出张量的数据类型与 `input_data` 的相同。默认值None。
- **shape** (Union[tuple, list, int]) - 用来表示张量的形状,可以是整数列表、整数元组或单一整数。如果 `input_data` 已经被设置,则不需要再设置 `shape` 。默认值None。
- **init** (Initializer) - 用来表示初始化数据的信息。init用于在并行模式下的延迟初始化。一般情况下不建议在其他条件下使用init接口来初始化参数。如果使用init接口来初始化参数需要调用 `Tensor.init_data` 接口把 `Tensor` 转换为实际数据
- **input_data** (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]) - 被存储的数据可以是其它Tensor也可以是Python基本数据如intfloatbool等或是一个NumPy对象。默认值None
- **dtype** (:class:`mindspore.dtype`) - 用于定义该Tensor的数据类型必须是 *mindSpore.dtype* 中定义的类型。如果该参数为None则数据类型与`input_data`一致,默认值None。
- **shape** (Union[tuple, list, int]) - 用于定义该Tensor的形状。如果指定了`input_data`,则无需设置该参数。默认值None。
- **init** (Initializer) - 用于在并行模式中延迟Tensor的数据的初始化如果指定该参数`dtype``shape`也必须被指定。不推荐在非自动并行之外的场景下使用该接口。只有当调用`Tensor.init_data`时,才会使用指定的`init`来初始化Tensor数据。默认值None
**返回:**
Tensor。如果未设置 `dtype``shape` ,返回与 `input_data` 具有相同数据类型和形状的张量。如果设置了 `dtype``shape` ,则输出的张量的数据类型或形状与设置的相同。
Tensor。
**样例:**
@ -42,7 +42,7 @@ mindspore.Tensor
.. py:method:: T
:property:
返回转置后的张量
返回转置后的Tensor
.. py:method:: abs()

View File

@ -33,28 +33,25 @@ np_types = (np.int8, np.int16, np.int32, np.int64,
class Tensor(Tensor_):
"""
Tensor is used for data storage.
Tensor inherits tensor object in C++.
Some functions are implemented in C++ and some functions are implemented in Python.
Tensor is a data structure that stores an n-dimensional array.
Args:
input_data (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]): Input data of the tensor.
Default: None.
dtype (:class:`mindspore.dtype`): Input data should be None, bool or numeric type defined in `mindspore.dtype`.
The argument is used to define the data type of the output tensor. If it is None, the data type of the
output tensor will be the same as the `input_data`. Default: None.
shape (Union[tuple, list, int]): A list of integers, a tuple of integers or an integer as the shape of
output. If `input_data` is available, `shape` doesn't need to be set. Default: None.
input_data (Union[Tensor, float, int, bool, tuple, list, numpy.ndarray]): The data to be stroed. It can be
another Tensor, Python number or NumPy ndarray. Default: None.
dtype (:class:`mindspore.dtype`): Used to indicate the data type of the output Tensor. The argument should
be defined in `mindspore.dtype`. If it is None, the data type of the output Tensor will be the same
as the `input_data`. Default: None.
shape (Union[tuple, list, int]): Used to indicate the shape of the output Tensor. The argument should be
a list of integers, a tuple of integers or an integer. If `input_data` is available,
`shape` doesn't need to be set. Default: None.
init (Initializer): The information of init data.
'init' is used for delayed initialization in parallel mode. Usually, it is not recommended to use
'init' interface to initialize parameters in other conditions. If 'init' interface is used to initialize
parameters, the `Tensor.init_data` API needs to be called to convert `Tensor` to the actual data.
'init' interface to initialize Tensor in the other conditions. If 'init' interface is used to initialize
Tensor, the `Tensor.init_data` API needs to be called to convert `Tensor` to the actual data.
Default: None.
Outputs:
Tensor. If `dtype` and `shape` are not set, return a tensor with the same dtype and shape as `input_data`.
If `dtype` or `shape` is set, the dtype or shape of the output Tensor is consistent with the setting.
Tensor.
Examples:
>>> import numpy as np