!6365 Refactoring Laplace random operator.

Merge pull request !6365 from jxlang910/push-to-opensource
This commit is contained in:
mindspore-ci-bot 2020-09-17 09:16:36 +08:00 committed by Gitee
commit 5e43308613
8 changed files with 75 additions and 61 deletions

View File

@ -41,7 +41,7 @@ from .gamma import _gamma_aicpu
from .poisson import _poisson_aicpu from .poisson import _poisson_aicpu
from .uniform_int import _uniform_int_aicpu from .uniform_int import _uniform_int_aicpu
from .uniform_real import _uniform_real_aicpu from .uniform_real import _uniform_real_aicpu
from .laplace import _laplace_aicpu from .standard_laplace import _standard_laplace_aicpu
from .strided_slice import _strided_slice_aicpu from .strided_slice import _strided_slice_aicpu
from .strided_slice_grad import _strided_slice_grad_aicpu from .strided_slice_grad import _strided_slice_grad_aicpu
from .end_of_sequence import _end_of_sequence_aicpu from .end_of_sequence import _end_of_sequence_aicpu

View File

@ -16,18 +16,17 @@
"""RandomLaplace op""" """RandomLaplace op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
laplace_op_info = AiCPURegOp("Laplace") \ laplace_op_info = AiCPURegOp("StandardLaplace") \
.fusion_type("OPAQUE") \ .fusion_type("OPAQUE") \
.input(0, "shape", "required") \ .input(0, "shape", "required") \
.input(1, "mean", "required") \
.input(2, "lambda_param", "required") \
.output(0, "output", "required") \ .output(0, "output", "required") \
.attr("seed", "int") \ .attr("seed", "int") \
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \ .attr("seed2", "int") \
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \ .dtype_format(DataType.I32_Default, DataType.F32_Default) \
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW) \
.get_op_info() .get_op_info()
@op_info_register(laplace_op_info) @op_info_register(laplace_op_info)
def _laplace_aicpu(): def _standard_laplace_aicpu():
"""RandomLaplace AiCPU register""" """RandomLaplace AiCPU register"""
return return

View File

@ -26,7 +26,7 @@ from .clip_ops import clip_by_value
from .multitype_ops.add_impl import hyper_add from .multitype_ops.add_impl import hyper_add
from .multitype_ops.ones_like_impl import ones_like from .multitype_ops.ones_like_impl import ones_like
from .multitype_ops.zeros_like_impl import zeros_like from .multitype_ops.zeros_like_impl import zeros_like
from .random_ops import normal, uniform, gamma, poisson, multinomial from .random_ops import normal, laplace, uniform, gamma, poisson, multinomial
__all__ = [ __all__ = [
@ -42,6 +42,7 @@ __all__ = [
'ones_like', 'ones_like',
'zip_operation', 'zip_operation',
'normal', 'normal',
'laplace',
'uniform', 'uniform',
'gamma', 'gamma',
'poisson', 'poisson',

View File

@ -76,6 +76,44 @@ def normal(shape, mean, stddev, seed=0):
value = random_normal * stddev + mean value = random_normal * stddev + mean
return value return value
def laplace(shape, mean, lambda_param, seed=0):
r"""
Generates random numbers according to the Laplace random number distribution.
It is defined as:
.. math::
\text{f}(x;μ,λ) = \frac{1}{2λ}\exp(-\frac{|x-μ|}{λ}),
Args:
shape (tuple): The shape of random tensor to be generated.
mean (Tensor): The mean μ distribution parameter, which specifies the location of the peak.
With float32 data type.
lambda_param (Tensor): The parameter used for controling the variance of this random distribution. The
variance of Laplace distribution is equal to twice the square of lambda_param. With float32 data type.
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
Default: 0.
Returns:
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and lambda_param.
The dtype is float32.
Examples:
>>> shape = (4, 16)
>>> mean = Tensor(1.0, mstype.float32)
>>> lambda_param = Tensor(1.0, mstype.float32)
>>> output = C.laplace(shape, mean, lambda_param, seed=5)
"""
mean_dtype = F.dtype(mean)
lambda_param_dtype = F.dtype(lambda_param)
const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "laplace")
const_utils.check_tensors_dtype_same(lambda_param_dtype, mstype.float32, "laplace")
seed1 = get_seed()
seed2 = seed
stdlaplace = P.StandardLaplace(seed1, seed2)
rnd = stdlaplace(shape)
value = rnd * lambda_param + mean
return value
def uniform(shape, minval, maxval, seed=0, dtype=mstype.float32): def uniform(shape, minval, maxval, seed=0, dtype=mstype.float32):
""" """
Generates random numbers according to the Uniform random number distribution. Generates random numbers according to the Uniform random number distribution.

View File

@ -57,7 +57,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan) Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan)
from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal, from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal,
RandomCategorical, Laplace, Multinomial) RandomCategorical, StandardLaplace, Multinomial)
from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, ApplyMomentum, BatchNorm, from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, ApplyMomentum, BatchNorm,
BiasAdd, Conv2D, BiasAdd, Conv2D,
DepthwiseConv2dNative, DepthwiseConv2dNative,
@ -193,7 +193,7 @@ __all__ = [
'Poisson', 'Poisson',
'UniformInt', 'UniformInt',
'UniformReal', 'UniformReal',
'Laplace', 'StandardLaplace',
'RandomCategorical', 'RandomCategorical',
'ResizeBilinear', 'ResizeBilinear',
'ScalarSummary', 'ScalarSummary',

View File

@ -63,60 +63,52 @@ class StandardNormal(PrimitiveWithInfer):
return out return out
class Laplace(PrimitiveWithInfer): class StandardLaplace(PrimitiveWithInfer):
r""" r"""
Generates random numbers according to the Laplace random number distribution. Generates random numbers according to the Laplace random number distribution (mean=0, lambda=1).
It is defined as: It is defined as:
.. math:: .. math::
\text{f}(x;μ,λ) = \frac{1}{2λ}\exp(-\frac{|x-μ|}{λ}), \text{f}(x;0,1) = \frac{1}{2}\exp(-|x|),
Args: Args:
seed (int): Seed data is used as entropy source for Random number engines to generate pseudo-random numbers. seed (int): Random seed. Default: 0.
Default: 0. seed2 (int): Random seed2. Default: 0.
Inputs: Inputs:
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
- **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak.
With float32 data type.
- **lambda_param** (Tensor) - The parameter used for controling the variance of this random distribution. The
variance of Laplace distribution is equal to twice the square of lambda_param. With float32 data type.
Outputs: Outputs:
Tensor, has the specified shape and its dtype is float32. Tensor. The shape that the input 'shape' denotes. The dtype is float32.
Examples: Examples:
>>> shape = (4, 16) >>> shape = (4, 16)
>>> mean = Tensor(1.0, mstype.float32) >>> stdlaplace = P.StandardLaplace(seed=2)
>>> lambda_param = Tensor(1.0, mstype.float32) >>> output = stdlaplace(shape)
>>> laplace = P.Laplace(seed=2)
>>> output = laplace(shape, mean, lambda_param)
""" """
@prim_attr_register @prim_attr_register
def __init__(self, seed=0): def __init__(self, seed=0, seed2=0):
"""Init Laplace""" """Init StandardLaplace"""
self.init_prim_io_names(inputs=['shape', 'mean', 'lambda_param'], outputs=['output']) self.init_prim_io_names(inputs=['shape'], outputs=['output'])
validator.check_value_type('seed', seed, [int], self.name) validator.check_value_type('seed', seed, [int], self.name)
validator.check_value_type('seed2', seed2, [int], self.name)
def __infer__(self, shape, mean, lambda_param): def __infer__(self, shape):
shape_v = shape["value"] shape_v = shape["value"]
if shape_v is None: if shape_v is None:
raise ValueError(f"For {self.name}, shape must be const.") raise ValueError(f"For {self.name}, shape must be const.")
validator.check_value_type("shape", shape_v, [tuple], self.name) validator.check_value_type("shape", shape_v, [tuple], self.name)
for i, shape_i in enumerate(shape_v): for i, shape_i in enumerate(shape_v):
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name) validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name)
validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name)
validator.check_tensor_type_same({"lambda_param": lambda_param["dtype"]}, [mstype.float32], self.name)
broadcast_shape = get_broadcast_shape(mean['shape'], lambda_param['shape'], self.name)
broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name)
out = { out = {
'shape': broadcast_shape, 'shape': shape_v,
'dtype': mstype.float32, 'dtype': mstype.float32,
'value': None} 'value': None}
return out return out
class Gamma(PrimitiveWithInfer): class Gamma(PrimitiveWithInfer):
r""" r"""
Produces random positive floating-point values x, distributed according to probability density function: Produces random positive floating-point values x, distributed according to probability density function:

View File

@ -12,46 +12,30 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
import numpy as np
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell): class Net(nn.Cell):
def __init__(self, shape, seed=0): def __init__(self, shape, seed=0, seed2=0):
super(Net, self).__init__() super(Net, self).__init__()
self.laplace = P.Laplace(seed=seed)
self.shape = shape self.shape = shape
self.seed = seed
self.seed2 = seed2
self.stdlaplace = P.StandardLaplace(seed, seed2)
def construct(self, mean, lambda_param): def construct(self):
return self.laplace(self.shape, mean, lambda_param) return self.stdlaplace(self.shape)
def test_net_1D(): def test_net():
seed = 10 seed = 10
seed2 = 10
shape = (3, 2, 4) shape = (3, 2, 4)
mean = 1.0 net = Net(shape, seed, seed2)
lambda_param = 1.0 output = net()
net = Net(shape, seed)
tmean, tlambda_param = Tensor(mean, mstype.float32), Tensor(lambda_param, mstype.float32)
output = net(tmean, tlambda_param)
print(output.asnumpy())
assert output.shape == (3, 2, 4) assert output.shape == (3, 2, 4)
def test_net_ND():
seed = 10
shape = (3, 1, 2)
mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
lambda_param = np.array([1.0]).astype(np.float32)
net = Net(shape, seed)
tmean, tlambda_param = Tensor(mean), Tensor(lambda_param)
output = net(tmean, tlambda_param)
print(output.asnumpy())
assert output.shape == (3, 2, 2)

View File

@ -585,11 +585,11 @@ class NormalNet(nn.Cell):
class LaplaceNet(nn.Cell): class LaplaceNet(nn.Cell):
def __init__(self, shape=None, seed=0): def __init__(self, shape=None, seed=0):
super(LaplaceNet, self).__init__() super(LaplaceNet, self).__init__()
self.laplace = P.Laplace(seed=seed)
self.shape = shape self.shape = shape
self.seed = seed
def construct(self, mean, lambda_param): def construct(self, mean, lambda_param):
out = self.laplace(self.shape, mean, lambda_param) out = C.laplace(self.shape, mean, lambda_param, self.seed)
return out return out