!40703 modify the supported platforms in py files

Merge pull request !40703 from 宦晓玲/code_docs_0822
This commit is contained in:
i-robot 2022-08-23 09:19:37 +00:00 committed by Gitee
commit 5cd05b9203
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
19 changed files with 84 additions and 61 deletions

View File

@ -11,7 +11,7 @@ mindspore.Tensor.atan2
输入 `x``y` 会通过隐式数据类型转换使数据类型保持一致。如果数据类型不同,低精度的数据类型会被转换到高精度的数据类型。 输入 `x``y` 会通过隐式数据类型转换使数据类型保持一致。如果数据类型不同,低精度的数据类型会被转换到高精度的数据类型。
参数: 参数:
- **y** (Tensor) - 输入Tensorshape应能在广播后与 `x` 相同,或 `x` 的shape在广播后与 `y` 相同。 - **y** (Tensor) - 输入Tensorshape应能在广播后与 `x` 相同,或 `x` 的shape在广播后与 `y` 相同。
返回: 返回:
Tensor与广播后的输入shape相同`x` 数据类型相同。 Tensor与广播后的输入shape相同`x` 数据类型相同。

View File

@ -10,15 +10,15 @@ mindspore.Tensor.bernoulli
out_{i} \sim Bernoulli(p_{i}) out_{i} \sim Bernoulli(p_{i})
参数: 参数:
- **p** (Union[Tensor, float], 可选) - shape需要可以被广播到当前Tensor。其数据类型为float32或float64。`p` 中每个值代表输出Tensor中对应广播位置为1的概率数值范围在0到1之间。默认值0.5。 - **p** (Union[Tensor, float], 可选) - shape需要可以被广播到当前Tensor。其数据类型为float32或float64。`p` 中每个值代表输出Tensor中对应广播位置为1的概率数值范围在0到1之间。默认值0.5。
- **seed** (int, 可选) - 随机种子,用于生成随机数数值范围是-1或正整数。默认值-1代表取当前时间戳。 - **seed** (int, 可选) - 随机种子,用于生成随机数数值范围是-1或正整数。默认值-1代表取当前时间戳。
返回: 返回:
Tensorshape和数据类型与当前Tensor相同。 Tensorshape和数据类型与当前Tensor相同。
异常: 异常:
- **TypeError** - 当前Tensor的数据类型不在int8, uint8, int16, int32, int64, bool, float32和float64中。 - **TypeError** - 当前Tensor的数据类型不在int8、uint8、int16、int32、int64、bool、float32和float64中。
- **TypeError** - `p` 的数据类型既不是float32也不是float64。 - **TypeError** - `p` 的数据类型既不是float32也不是float64。
- **TypeError** - `seed` 不是int。 - **TypeError** - `seed` 的数据类型不是int。
- **ValueError** - `seed` 是负数且不为-1 - **ValueError** - `p` 数值范围不在0到1之间
- **ValueError** - `p` 数值范围不在0到1之间 - **ValueError** - `seed` 是负数且不为-1

View File

@ -3,7 +3,7 @@ mindspore.Tensor.inv
.. py:method:: mindspore.Tensor.inv() .. py:method:: mindspore.Tensor.inv()
计算当前Tensor的倒数。 逐元素计算当前Tensor的倒数。
.. math:: .. math::
out_i = \frac{1}{x_{i} } out_i = \frac{1}{x_{i} }

View File

@ -3,7 +3,7 @@ mindspore.Tensor.invert
.. py:method:: mindspore.Tensor.invert() .. py:method:: mindspore.Tensor.invert()
按位翻转当前Tensor。 逐元素按位翻转当前Tensor。
.. math:: .. math::
out_i = \sim x_{i} out_i = \sim x_{i}

View File

@ -3,13 +3,13 @@ mindspore.Tensor.lerp
.. py:method:: mindspore.Tensor.lerp(end, weight) .. py:method:: mindspore.Tensor.lerp(end, weight)
基于某个浮点数Scalar或权重Tensor的值 计算当前Tensor和 `end` Tensor之间的线性插值。 基于某个浮点数Scalar或权重Tensor的值计算当前Tensor和 `end` Tensor之间的线性插值。
如果参数 `weight` 是一个Tensor那么另两个输入的维度信息可以被广播到当前Tensor。 如果参数 `weight` 是一个Tensor那么另两个输入的维度信息可以被广播到当前Tensor。
如果参数 `weight` 是一个Scalar 那么 `end` 的维度信息可以被广播到当前Tensor。 如果参数 `weight` 是一个Scalar那么 `end` 的维度信息可以被广播到当前Tensor。
参数: 参数:
- **end** (Tensor) - 进行线性插值的Tensor结束点,其数据类型必须为float16或者float32。 - **end** (Tensor) - 进行线性插值的Tensor结束点数据类型必须为float16或者float32。
- **weight** (Union[float, Tensor]) - 线性插值公式的权重参数。当为Scalar时其数据类型为float当为Tensor时其数据类型为float16或者float32。 - **weight** (Union[float, Tensor]) - 线性插值公式的权重参数。当为Scalar时其数据类型为float当为Tensor时其数据类型为float16或者float32。
返回: 返回:

View File

@ -5,6 +5,8 @@ mindspore.Tensor.log1p
对当前Tensor逐元素加一后计算自然对数。 对当前Tensor逐元素加一后计算自然对数。
其中 `x` 表示当前Tensor。
.. math:: .. math::
out_i = {log_e}(x_i + 1) out_i = {log_e}(x_i + 1)

View File

@ -3,7 +3,7 @@ mindspore.Tensor.logit
.. py:method:: mindspore.Tensor.logit(eps=None) .. py:method:: mindspore.Tensor.logit(eps=None)
逐元素计算张量的logit值当 eps 不是 None 时, `x` 中的元素被截断到范围[eps, 1-eps]内。 逐元素计算张量的logit值当 eps 不是 None 时, `x` 中的元素被截断到范围[eps, 1-eps]内。
当 eps 为 None 时,输入 `x` 不进行数值截断。 当 eps 为 None 时,输入 `x` 不进行数值截断。
`x` 指的当前 Tensor。 `x` 指的当前 Tensor。

View File

@ -6,7 +6,7 @@ mindspore.Tensor.std
计算指定维度的标准差。 计算指定维度的标准差。
标准差是方差的算术平方根,如::math:`std = sqrt(mean(abs(x - x.mean())**2))` 标准差是方差的算术平方根,如::math:`std = sqrt(mean(abs(x - x.mean())**2))`
返回标准差默认情况下计算展开数组的标准差,否则在指定维度上计算。 返回标准差默认情况下计算展开数组的标准差,否则在指定维度上计算。
.. note:: .. note::
不支持NumPy参数 `dtype``out``where` 不支持NumPy参数 `dtype``out``where`

View File

@ -8,8 +8,8 @@ mindspore.Tensor.svd
更多参考详见 :func:`mindspore.ops.svd` 更多参考详见 :func:`mindspore.ops.svd`
参数: 参数:
- **full_matrices** (bool, optional) - 如果这个参数为True则计算完整的 :math:`U`:math:`V` 。否则 :math:`U`:math:`V` 的shape和P有关P是M和N的较小值, M和N是输入矩阵的行和列。默认值False。 - **full_matrices** (bool, optional) - 如果这个参数为True则计算完整的 :math:`U`:math:`V` 。否则 :math:`U`:math:`V` 的shape和P有关。P是M和N的较小值。M和N是输入矩阵的行和列。默认值False。
- **compute_uv** (bool, optional) - 如果这个参数为True则计算 :math:`U`:math:`V` 否则只计算 :math:`S` 。默认值True。 - **compute_uv** (bool, optional) - 如果这个参数为True则计算 :math:`U`:math:`V` 。如果为false,只计算 :math:`S` 。默认值True。
返回: 返回:
- **s** (Tensor) - 奇异值。shape为 :math:`(*, P)` - **s** (Tensor) - 奇异值。shape为 :math:`(*, P)`

View File

@ -10,7 +10,7 @@ mindspore.Tensor.tan
out_i = tan(x_i) out_i = tan(x_i)
返回: 返回:
Tensor。 Tensor和当前输入的shape一样
异常: 异常:
- **TypeError** - 当前输入不是Tensor。 - **TypeError** - 当前输入不是Tensor。

View File

@ -7,7 +7,7 @@ mindspore.Tensor.var
方差是平均值的平方偏差的平均值,即::math:`var = mean(abs(x - x.mean())**2)` 方差是平均值的平方偏差的平均值,即::math:`var = mean(abs(x - x.mean())**2)`
返回方差值默认情况下计算展开Tensor的方差否则在指定维度上计算。 返回方差值默认情况下计算展开Tensor的方差否则在指定维度上计算。
.. note:: .. note::
不支持NumPy参数 `dtype``out``where` 不支持NumPy参数 `dtype``out``where`

View File

@ -421,6 +421,7 @@ class Tensor(Tensor_):
Convert numpy array to Tensor. Convert numpy array to Tensor.
If the data is not C contiguous, the data will be copied to C contiguous to construct the tensor. If the data is not C contiguous, the data will be copied to C contiguous to construct the tensor.
Otherwise, The tensor will be constructed using this numpy array without copy. Otherwise, The tensor will be constructed using this numpy array without copy.
Args: Args:
array (numpy.array): The input array. array (numpy.array): The input array.
@ -696,7 +697,7 @@ class Tensor(Tensor_):
r""" r"""
Returns arctangent of x/y element-wise. Returns arctangent of x/y element-wise.
`x` refer to self tensor. `x` refers to self tensor.
It returns :math:`\theta\ \in\ [-\pi, \pi]` It returns :math:`\theta\ \in\ [-\pi, \pi]`
such that :math:`x = r*\sin(\theta), y = r*\cos(\theta)`, where :math:`r = \sqrt{x^2 + y^2}`. such that :math:`x = r*\sin(\theta), y = r*\cos(\theta)`, where :math:`r = \sqrt{x^2 + y^2}`.
@ -706,10 +707,11 @@ class Tensor(Tensor_):
the relatively highest precision data type. the relatively highest precision data type.
Args: Args:
y (Tensor): The input tensor. It has the same shape with `x`. y (Tensor): The input tensor. It has the same shape with `x` after broadcasting,
or the shape of `x` is the same as `y` after broadcasting.
Returns: Returns:
Tensor, the shape is the same as the one after broadcasting,and the data type is same as `x`. Tensor, the shape is the same as the one after broadcasting, and the data type is same as `x`.
Raises: Raises:
TypeError: If `x` or `y` is not a Tensor. TypeError: If `x` or `y` is not a Tensor.
@ -1246,7 +1248,7 @@ class Tensor(Tensor_):
""" """
Does a linear interpolation of two tensors start and end based on a float or tensor weight. Does a linear interpolation of two tensors start and end based on a float or tensor weight.
If `weight` is a tensor, the shapes of two inputs need to be broadcast; If `weight` is a tensor, the shapes of two inputs need to be broadcast.
If `weight` is a float, the shapes of `end` need to be broadcast. If `weight` is a float, the shapes of `end` need to be broadcast.
Args: Args:
@ -1407,7 +1409,7 @@ class Tensor(Tensor_):
r""" r"""
Computes the determinant of one or more square matrices. Computes the determinant of one or more square matrices.
`x` refer to self tensor. `x` refers to self tensor.
Returns: Returns:
@ -1435,7 +1437,7 @@ class Tensor(Tensor_):
r""" r"""
Returns the natural logarithm of one plus the input tensor element-wise. Returns the natural logarithm of one plus the input tensor element-wise.
`x` refer to self tensor. `x` refers to self tensor.
.. math:: .. math::
out_i = {log_e}(x_i + 1) out_i = {log_e}(x_i + 1)
@ -1465,7 +1467,7 @@ class Tensor(Tensor_):
Calculate the logit of a tensor element-wise. When eps is not None, element in 'x' is clamped to [eps, 1-eps]. Calculate the logit of a tensor element-wise. When eps is not None, element in 'x' is clamped to [eps, 1-eps].
When eps is None, input 'x' is not clamped. When eps is None, input 'x' is not clamped.
`x` refer to self tensor. `x` refers to self tensor.
.. math:: .. math::
\begin{align} \begin{align}
@ -1508,7 +1510,7 @@ class Tensor(Tensor_):
r""" r"""
Computes the sign and the log of the absolute value of the determinant of one or more square matrices. Computes the sign and the log of the absolute value of the determinant of one or more square matrices.
`x` refer to self tensor. `x` refers to self tensor.
Returns: Returns:
Tensor, The signs of the log determinants. The shape is :math:`x\_shape[:-2]`, the dtype is same as `x`. Tensor, The signs of the log determinants. The shape is :math:`x\_shape[:-2]`, the dtype is same as `x`.
@ -1601,6 +1603,8 @@ class Tensor(Tensor_):
.. math:: .. math::
out_i = \frac{1}{x_{i} } out_i = \frac{1}{x_{i} }
where `x` refers to self Tensor.
Returns: Returns:
Tensor, has the same type and shape as self Tensor. Tensor, has the same type and shape as self Tensor.
@ -1626,6 +1630,8 @@ class Tensor(Tensor_):
.. math:: .. math::
out_i = \sim x_{i} out_i = \sim x_{i}
where `x` refers to self Tensor.
Returns: Returns:
Tensor, has the same shape as as self Tensor. Tensor, has the same shape as as self Tensor.
@ -2191,9 +2197,6 @@ class Tensor(Tensor_):
Returns: Returns:
Tensor, has the same data type as input. Tensor, has the same data type as input.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Raises: Raises:
TypeError: If `order` is not string type. TypeError: If `order` is not string type.
ValueError: If `order` is string type, but not 'C' or 'F'. ValueError: If `order` is string type, but not 'C' or 'F'.
@ -2203,6 +2206,9 @@ class Tensor(Tensor_):
:func:`mindspore.Tensor.ravel`: Return a contiguous flattened tensor. :func:`mindspore.Tensor.ravel`: Return a contiguous flattened tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> import numpy as np >>> import numpy as np
>>> from mindspore import Tensor >>> from mindspore import Tensor
@ -2582,12 +2588,12 @@ class Tensor(Tensor_):
Returns: Returns:
Tensor. Tensor.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
See also: See also:
:func:`mindspore.Tensor.sum`: Return sum of tensor elements over a given axis. :func:`mindspore.Tensor.sum`: Return sum of tensor elements over a given axis.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> import numpy as np >>> import numpy as np
>>> from mindspore import Tensor >>> from mindspore import Tensor
@ -3773,12 +3779,12 @@ class Tensor(Tensor_):
Returns: Returns:
Tensor, the merged result. Tensor, the merged result.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Raises: Raises:
ValueError: If the input tensor and any of the `choices` cannot be broadcast. ValueError: If the input tensor and any of the `choices` cannot be broadcast.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> import numpy as np >>> import numpy as np
>>> from mindspore import Tensor >>> from mindspore import Tensor
@ -4572,7 +4578,7 @@ class Tensor(Tensor_):
Only 2-D tensor is supported for now. Only 2-D tensor is supported for now.
Returns: Returns:
COOTensor, a sparse representation of the original dense tensor, containing: COOTensor, a sparse representation of the original dense tensor, containing the following parts.
- indices (Tensor): 2-D integer tensor, indicates the positions of `values` of the dense tensor. - indices (Tensor): 2-D integer tensor, indicates the positions of `values` of the dense tensor.
- values (Tensor): 1-D tensor, indicates the non-zero values of the dense tensor. - values (Tensor): 1-D tensor, indicates the non-zero values of the dense tensor.
@ -4606,7 +4612,7 @@ class Tensor(Tensor_):
Only 2-D tensor is supported for now. Only 2-D tensor is supported for now.
Returns: Returns:
CSRTensor, a sparse representation of the original dense tensor, containing: CSRTensor, a sparse representation of the original dense tensor, containing the following parts.
- indptr (Tensor): 1-D integer tensor, indicates the start and end point for `values` in each row. - indptr (Tensor): 1-D integer tensor, indicates the start and end point for `values` in each row.
- indices (Tensor): 1-D integer tensor, indicates the column positions of all non-zero values of the input. - indices (Tensor): 1-D integer tensor, indicates the column positions of all non-zero values of the input.
@ -4764,7 +4770,7 @@ class Tensor(Tensor_):
RuntimeError: If `axis` is not in the range of :math:`[-ndim, ndim-1]`. RuntimeError: If `axis` is not in the range of :math:`[-ndim, ndim-1]`.
Supported Platforms: Supported Platforms:
``GPU`` ``Ascend`` ``GPU``
Examples: Examples:
>>> import numpy as np >>> import numpy as np
@ -4861,20 +4867,20 @@ class Tensor(Tensor_):
return tensor_operator_registry.get('diag')()(self) return tensor_operator_registry.get('diag')()(self)
def xdivy(self, y): def xdivy(self, y):
""" r"""
Divides self tensor by the input tensor element-wise. Returns zero when self is zero. The dtype of Divides self tensor by the input tensor element-wise. Returns zero when self is zero. The dtype of
original Tensor must be one of float, complex or bool. For simplicity, denote the original Tensor by x. original Tensor must be one of float, complex or bool. For simplicity, denote the original Tensor by x.
.. math:: .. math::
out_i = x_{i} / {y_{i}} out_i = x_{i}\y_{i}
`x` and `y` comply with the implicit type conversion rules to make the data types consistent. `x` and `y` comply with the implicit type conversion rules to make the data types consistent.
'y' must be tensor or scalar, when y is tensor, dtypes of x and y cannot be bool at the same time, 'y' must be tensor or scalar, when y is tensor, dtypes of x and y cannot be bool at the same time,
and the shapes of them could be broadcast. When y is scalar, the scalar can only be a constant. and the shapes of them could be broadcast. When y is scalar, the scalar can only be a constant.
Args: Args:
- **y** (Union[Tensor, Number, bool]) - The second input y is a Number, y (Union[Tensor, number.Number, bool]): The second input y is a Number,
or a bool when the first input x is a tensor, or a tensor whose data type is float16, or a bool when the first input x is a tensor, or a tensor whose data type is float16,
float32, float64, complex64, complex128 or bool. float32, float64, complex64, complex128 or bool.
@ -4964,7 +4970,7 @@ class Tensor(Tensor_):
- On Ascend, the data type of `x` and `y` must be float16 or float32. - On Ascend, the data type of `x` and `y` must be float16 or float32.
Args: Args:
- **y** (Union[Tensor, number.Number, bool]) - The `y` input is a number.Number or y (Union[Tensor, number.Number, bool]): The `y` input is a number.Number or
a bool or a tensor whose data type is number or bool. a bool or a tensor whose data type is number or bool.
Returns: Returns:
@ -5039,7 +5045,7 @@ class Tensor(Tensor_):
.. warning:: .. warning::
- If sorted is set to 'False', it will use the aicpu operator, the performance may be reduced. - If sorted is set to 'False', it will use the aicpu operator, the performance may be reduced.
`input_x` refer to self tensor. `input_x` refers to self tensor.
If the `input_x` is a one-dimensional Tensor, finds the `k` largest entries in the Tensor, If the `input_x` is a one-dimensional Tensor, finds the `k` largest entries in the Tensor,
and outputs its value and index as a Tensor. Therefore, values[`k`] is the `k` largest item in `input_x`, and outputs its value and index as a Tensor. Therefore, values[`k`] is the `k` largest item in `input_x`,

View File

@ -90,7 +90,7 @@ class CELU(Cell):
TypeError: If the dtype of 'input_x' is neither float16 nor float32. TypeError: If the dtype of 'input_x' is neither float16 nor float32.
Supported Platforms: Supported Platforms:
``Ascend`` ``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> x = Tensor(np.array([-2.0, -1.0, 1.0, 2.0]), mindspore.float32) >>> x = Tensor(np.array([-2.0, -1.0, 1.0, 2.0]), mindspore.float32)
@ -967,7 +967,7 @@ class Softsign(Cell):
Refer to :func:`mindspore.ops.softsign` for more details. Refer to :func:`mindspore.ops.softsign` for more details.
Supported Platforms: Supported Platforms:
``Ascend`` ``CPU`` ``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> x = Tensor(np.array([0, -1, 2, 30, -30]), mindspore.float32) >>> x = Tensor(np.array([0, -1, 2, 30, -30]), mindspore.float32)
@ -1409,7 +1409,7 @@ class Mish(Cell):
Refer to :func:`mindspore.ops.mish` for more details. Refer to :func:`mindspore.ops.mish` for more details.
Supported Platforms: Supported Platforms:
``Ascend`` ``CPU`` ``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)

View File

@ -839,9 +839,6 @@ class Conv3dTranspose(_Conv):
\text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\ \text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
\end{array} \end{array}
Supported Platforms:
``Ascend`` ``GPU``
Raises: Raises:
TypeError: If `in_channels`, `out_channels` or `group` is not an int. TypeError: If `in_channels`, `out_channels` or `group` is not an int.
TypeError: If `kernel_size`, `stride`, `padding` , `dilation` or `output_padding` TypeError: If `kernel_size`, `stride`, `padding` , `dilation` or `output_padding`
@ -854,6 +851,9 @@ class Conv3dTranspose(_Conv):
ValueError: If `pad_mode` is not equal to 'pad' and `padding` is not equal to (0, 0, 0, 0, 0, 0). ValueError: If `pad_mode` is not equal to 'pad' and `padding` is not equal to (0, 0, 0, 0, 0, 0).
ValueError: If `data_format` is not 'NCDHW'. ValueError: If `data_format` is not 'NCDHW'.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> x = Tensor(np.ones([32, 16, 10, 32, 32]), mindspore.float32) >>> x = Tensor(np.ones([32, 16, 10, 32, 32]), mindspore.float32)
>>> conv3d_transpose = nn.Conv3dTranspose(in_channels=16, out_channels=3, kernel_size=(4, 6, 2), >>> conv3d_transpose = nn.Conv3dTranspose(in_channels=16, out_channels=3, kernel_size=(4, 6, 2),

View File

@ -409,7 +409,7 @@ def argmin(x, axis=-1):
TypeError: If `axis` is not an int. TypeError: If `axis` is not an int.
Supported Platforms: Supported Platforms:
``Ascend`` ``CPU`` ``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32) >>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32)
@ -1998,7 +1998,7 @@ def bessel_i0e(x):
TypeError: If dtype of `x` is not float16, float32 or float64. TypeError: If dtype of `x` is not float16, float32 or float64.
Supported Platforms: Supported Platforms:
``CPU`` ``GPU`` ``CPU``
Examples: Examples:
>>> x = Tensor(np.array([-1, -0.5, 0.5, 1]), mindspore.float32) >>> x = Tensor(np.array([-1, -0.5, 0.5, 1]), mindspore.float32)
@ -2405,7 +2405,7 @@ def trunc(input_x):
TypeError: If `input_x` is not a Tensor. TypeError: If `input_x` is not a Tensor.
Supported Platforms: Supported Platforms:
``Ascend`` ``CPU`` ``CPU``
Examples: Examples:
>>> input_x = Tensor(np.array([3.4742, 0.5466, -0.8008, -3.9079]),mindspore.float32) >>> input_x = Tensor(np.array([3.4742, 0.5466, -0.8008, -3.9079]),mindspore.float32)

View File

@ -851,7 +851,7 @@ def softsign(x):
TypeError: If dtype of `x` is neither float16 nor float32. TypeError: If dtype of `x` is neither float16 nor float32.
Supported Platforms: Supported Platforms:
``Ascend`` ``CPU`` ``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> from mindspore.ops import functional as F >>> from mindspore.ops import functional as F
@ -1729,7 +1729,7 @@ def mish(x):
TypeError: If dtype of `x` is neither float16 nor float32. TypeError: If dtype of `x` is neither float16 nor float32.
Supported Platforms: Supported Platforms:
``Ascend`` ``CPU`` ``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32) >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)

View File

@ -588,8 +588,8 @@ class Im2Col(Primitive):
Default: 0. Default: 0.
Inputs: Inputs:
- **x** (Tensor) : input tensor, only 4-D input tensors (batched image-like tensors) are supported. - **x** (Tensor) - input tensor, only 4-D input tensors (batched image-like tensors) are supported.
support all real number data type. support all real number data type.
Outputs: Outputs:
Tensor, a 4-D Tensor with same type of input `x`. Tensor, a 4-D Tensor with same type of input `x`.
@ -3348,7 +3348,7 @@ class StridedSlice(PrimitiveWithInfer):
`x[2:,...]` is equivalent to `x[2:5,:,:,:]`. `x[2:,...]` is equivalent to `x[2:5,:,:,:]`.
If the ith bit of `new_axis_mask` is set, `begin`, `end` and `strides` are ignored and a new length 1 If the ith bit of `new_axis_mask` is set, `begin`, `end` and `strides` are ignored and a new length 1
dimension is added at the specified position in tthe output tensor. dimension is added at the specified position in the output tensor.
As for a 5*6*7 tensor, `x[:2, newaxis, :6]` will produce a tensor with shape :math:`(2, 1, 7)` . As for a 5*6*7 tensor, `x[:2, newaxis, :6]` will produce a tensor with shape :math:`(2, 1, 7)` .
@ -6460,7 +6460,7 @@ class SearchSorted(PrimitiveWithInfer):
Inputs: Inputs:
- **sequence** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R-1, x_R)` or `(x_1)`. - **sequence** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R-1, x_R)` or `(x_1)`.
It must contain monitonically increasing sequence on the innermost dimension. It must contain monitonically increasing sequence on the innermost dimension.
- **values** (Tensor) - The shape of tensor is : math:`(x_1, x_2, ..., x_R-1, x_S)`. - **values** (Tensor) - The shape of tensor is : math:`(x_1, x_2, ..., x_R-1, x_S)`.
Outputs: Outputs:
@ -8120,6 +8120,9 @@ class PopulationCount(Primitive):
Computes element-wise population count(a.k.a bitsum, bitcount). Computes element-wise population count(a.k.a bitsum, bitcount).
Refer to :func:`mindspore.ops.population_count` for more detail. Refer to :func:`mindspore.ops.population_count` for more detail.
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
""" """
@prim_attr_register @prim_attr_register

View File

@ -1859,6 +1859,9 @@ class InplaceAdd(PrimitiveWithInfer):
Refer to :func:`mindspore.ops.inplace_add` for more detail. Refer to :func:`mindspore.ops.inplace_add` for more detail.
Supported Platforms:
``Ascend`` ``CPU``
Examples: Examples:
>>> import numpy as np >>> import numpy as np
>>> import mindspore >>> import mindspore
@ -1912,6 +1915,9 @@ class InplaceSub(PrimitiveWithInfer):
Refer to :func:`mindspore.ops.inplace_sub` for more detail. Refer to :func:`mindspore.ops.inplace_sub` for more detail.
Supported Platforms:
``Ascend`` ``CPU``
Examples: Examples:
>>> import numpy as np >>> import numpy as np
>>> import mindspore >>> import mindspore
@ -4923,7 +4929,7 @@ class BesselI0e(Primitive):
TypeError: If dtype of `x` is not float16, float32 or float64. TypeError: If dtype of `x` is not float16, float32 or float64.
Supported Platforms: Supported Platforms:
``Ascend`` ``CPU`` ``GPU`` ``GPU`` ``CPU``
Examples: Examples:
>>> bessel_i0e = ops.BesselI0e() >>> bessel_i0e = ops.BesselI0e()
@ -4963,7 +4969,7 @@ class BesselI1e(Primitive):
TypeError: If dtype of `x` is not float16, float32 or float64. TypeError: If dtype of `x` is not float16, float32 or float64.
Supported Platforms: Supported Platforms:
``Ascend`` ``CPU`` ``GPU`` ``CPU``
Examples: Examples:
>>> bessel_i1e = ops.BesselI1e() >>> bessel_i1e = ops.BesselI1e()
@ -5773,6 +5779,9 @@ class Trunc(Primitive):
Returns a new tensor with the truncated integer values of the elements of input. Returns a new tensor with the truncated integer values of the elements of input.
Refer to :func:`mindspore.ops.trunc` for more detail. Refer to :func:`mindspore.ops.trunc` for more detail.
Supported Platforms:
``CPU``
""" """
@prim_attr_register @prim_attr_register

View File

@ -7253,6 +7253,9 @@ class CTCGreedyDecoder(Primitive):
Performs greedy decoding on the logits given in inputs. Performs greedy decoding on the logits given in inputs.
Refer to :func:`mindspore.ops.ctc_greedy_decoder` for more detail. Refer to :func:`mindspore.ops.ctc_greedy_decoder` for more detail.
Supported Platforms:
``Ascend`` ``CPU``
""" """
@prim_attr_register @prim_attr_register
@ -8585,7 +8588,7 @@ class Conv3DTranspose(Primitive):
ValueError: If bias is not none. The rank of dout and weight is not 5. ValueError: If bias is not none. The rank of dout and weight is not 5.
Supported Platforms: Supported Platforms:
``Ascend`` ``GPU`` ``Ascend`` ``GPU`` ``CPU``
Examples: Examples:
>>> dout = Tensor(np.ones([32, 16, 10, 32, 32]), mindspore.float16) >>> dout = Tensor(np.ones([32, 16, 10, 32, 32]), mindspore.float16)