forked from mindspore-Ecosystem/mindspore
!2023 add op CosineEmbeddingLoss
Merge pull request !2023 from zhaozhenlong/op/cosine-embedding-loss-open
This commit is contained in:
commit
5c7cb7bd71
|
@ -322,6 +322,15 @@ class Validator:
|
|||
return arg_value
|
||||
raise TypeError(f"{msg_prefix} `{arg_name}` must be float.")
|
||||
|
||||
@staticmethod
|
||||
def check_reduce_shape(ori_shape, shape, axis, prim_name):
|
||||
"""Checks whether shape is ori_shape reduced on axis"""
|
||||
axis = axis if isinstance(axis, Iterable) else (axis,)
|
||||
exp_shape = [ori_shape[i] for i in range(len(ori_shape)) if i not in axis]
|
||||
if list(shape) != exp_shape:
|
||||
raise ValueError(f'For {prim_name}, {ori_shape} reduce on {axis} should be '
|
||||
f'{tuple(exp_shape)}, but got {shape}.')
|
||||
|
||||
|
||||
class ParamValidator:
|
||||
"""Parameter validator. NOTICE: this class will be replaced by `class Validator`"""
|
||||
|
|
|
@ -20,8 +20,9 @@ It shows how well the model works on a dataset and the optimization target which
|
|||
"""
|
||||
|
||||
from .loss import L1Loss, MSELoss, SmoothL1Loss, \
|
||||
SoftmaxCrossEntropyWithLogits, SoftmaxCrossEntropyExpand
|
||||
SoftmaxCrossEntropyWithLogits, SoftmaxCrossEntropyExpand, CosineEmbeddingLoss
|
||||
|
||||
__all__ = ['L1Loss', 'MSELoss', 'SmoothL1Loss',
|
||||
'SoftmaxCrossEntropyWithLogits',
|
||||
'SoftmaxCrossEntropyExpand']
|
||||
'SoftmaxCrossEntropyExpand',
|
||||
'CosineEmbeddingLoss']
|
||||
|
|
|
@ -17,9 +17,11 @@ import mindspore.common.dtype as mstype
|
|||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops.primitive import constexpr
|
||||
from mindspore.nn.cell import Cell
|
||||
from mindspore._checkparam import Validator as validator
|
||||
from mindspore._checkparam import Rel
|
||||
from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils
|
||||
from ... import context
|
||||
|
||||
|
||||
|
@ -329,3 +331,71 @@ class SoftmaxCrossEntropyExpand(Cell):
|
|||
loss = self.reduce_mean(loss, -1)
|
||||
|
||||
return loss
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_reduced_shape_valid(ori_shape, reduced_shape, axis, cls_name):
|
||||
validator.check_reduce_shape(ori_shape, reduced_shape, axis, cls_name)
|
||||
|
||||
class CosineEmbeddingLoss(_Loss):
|
||||
r"""
|
||||
Computes the similarity between two tensors using cosine distance.
|
||||
|
||||
Given two tensors `x1`, `x2`, and a Tensor label `y` with values 1 or -1:
|
||||
|
||||
.. math::
|
||||
loss(x_1, x_2, y) = \begin{cases}
|
||||
1-cos(x_1, x_2), & \text{if } y = 1\\
|
||||
max(0, cos(x_1, x_2)-margin), & \text{if } y = -1\\
|
||||
\end{cases}
|
||||
|
||||
Args:
|
||||
margin (float): Should be in [-1.0, 1.0]. Default 0.0.
|
||||
reduction (str): Specifies which reduction to apply to the output. It should be one of
|
||||
"none", "mean", "sum", meaning no reduction, reduce mean or sum on output, respectively. Default "mean".
|
||||
|
||||
Inputs:
|
||||
- **input_x1** (Tensor) - Input tensor.
|
||||
- **input_x2** (Tensor) - Its shape and data type should be the same as `input_x1`'s shape and data type.
|
||||
- **y** (Tensor) - Contains value 1 or -1. Suppose `input_x1` shape is
|
||||
:math:`(x_1, x_2, x_3,..., x_R)`, then `target` shape should be :math:`(x_1, x_3, x_4, ..., x_R)`.
|
||||
|
||||
Outputs:
|
||||
- **loss** (Tensor) - If `reduction` is "none", its shape is the same as `y`'s shape, loss value otherwise.
|
||||
|
||||
Examples:
|
||||
>>> x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]), mindspore.float32)
|
||||
>>> x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([1,-1]), mindspore.int32)
|
||||
>>> cosine_embedding_loss = P.CosineEmbeddingLoss()
|
||||
>>> cosine_embedding_loss(x1, x2, target)
|
||||
[0.0003426671]
|
||||
"""
|
||||
def __init__(self, margin=0.0, reduction="mean"):
|
||||
super(CosineEmbeddingLoss, self).__init__(reduction)
|
||||
self.reduce_sum = P.ReduceSum()
|
||||
self.maximum = P.Maximum()
|
||||
validator.check_value_type("margin", margin, [float], self.cls_name)
|
||||
self.margin = validator.check_number_range("margin", margin, -1.0, 1.0, Rel.INC_BOTH, self.cls_name)
|
||||
|
||||
def construct(self, x1, x2, y):
|
||||
F.same_type_shape(x1, x2)
|
||||
_check_reduced_shape_valid(F.shape(x1), F.shape(y), (1,), self.cls_name)
|
||||
# if target > 0, 1-cosine(x1, x2)
|
||||
# else, max(0, cosine(x1, x2)-margin)
|
||||
np_eps = const_utils.get_np_eps(F.dtype(x1))
|
||||
eps = F.cast(np_eps, F.dtype(x1))
|
||||
prod_sum = self.reduce_sum(x1 * x2, (1,))
|
||||
square1 = self.reduce_sum(F.square(x1), (1,)) + eps
|
||||
square2 = self.reduce_sum(F.square(x2), (1,)) + eps
|
||||
denom = F.sqrt(square1 * square2)
|
||||
cosine = prod_sum / denom
|
||||
|
||||
pos_value = 1.0 - cosine
|
||||
neg_value = self.maximum(cosine - self.margin, 0.0)
|
||||
zeros = F.zeros_like(cosine)
|
||||
pos_part = F.select(y == 1, pos_value, zeros)
|
||||
neg_part = F.select(y == -1, neg_value, zeros)
|
||||
output_unreduced = pos_part + neg_part
|
||||
|
||||
return self.get_loss(output_unreduced)
|
||||
|
|
|
@ -62,3 +62,11 @@ def test_SoftmaxCrossEntropyExpand():
|
|||
logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32))
|
||||
labels = Tensor(np.random.randint(0, 9, [10,]).astype(np.float32))
|
||||
_executor.compile(loss, logits, labels)
|
||||
|
||||
def test_cosine_embedding_loss():
|
||||
""" test CosineEmbeddingLoss """
|
||||
loss = nn.CosineEmbeddingLoss()
|
||||
x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]).astype(np.float32))
|
||||
x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]).astype(np.float32))
|
||||
label = Tensor(np.array([1, -1]).astype(np.int32))
|
||||
loss(x1, x2, label)
|
||||
|
|
Loading…
Reference in New Issue