forked from mindspore-Ecosystem/mindspore
nn.AdaptiveAvgPool1d and nn.AdaptiveMaxPool1d does not support input dtype float64.
This commit is contained in:
parent
d7deca2848
commit
59aa342c82
|
@ -17,7 +17,7 @@ mindspore.nn.AdaptiveAvgPool1d
|
||||||
|
|
||||||
**输入:**
|
**输入:**
|
||||||
|
|
||||||
- **x** (Tensor) - shape为 :math:`(N, C_{in}, L_{in})` 的Tensor,数据类型为float16,float32或float64。
|
- **x** (Tensor) - shape为 :math:`(N, C_{in}, L_{in})` 的Tensor,数据类型为float16或float32。
|
||||||
|
|
||||||
**输出:**
|
**输出:**
|
||||||
|
|
||||||
|
@ -26,7 +26,7 @@ mindspore.nn.AdaptiveAvgPool1d
|
||||||
**异常:**
|
**异常:**
|
||||||
|
|
||||||
- **TypeError** - `output_size` 不是int。
|
- **TypeError** - `output_size` 不是int。
|
||||||
- **TypeError** - `x` 不是float16或float32或float64。
|
- **TypeError** - `x` 不是float16或float32。
|
||||||
- **ValueError** - `output_size` 小于1。
|
- **ValueError** - `output_size` 小于1。
|
||||||
- **ValueError** - `x` 的shape长度不等于3。
|
- **ValueError** - `x` 的shape长度不等于3。
|
||||||
- **ValueError** - `x` 的最后一个维度小于 `output_size`。
|
- **ValueError** - `x` 的最后一个维度小于 `output_size`。
|
||||||
|
|
|
@ -17,7 +17,7 @@ mindspore.nn.AdaptiveMaxPool1d
|
||||||
|
|
||||||
**输入:**
|
**输入:**
|
||||||
|
|
||||||
- **x** (Tensor) - shape为 :math:`(N, C_{in}, L_{in})` 的Tensor,数据类型为float16,float32或float64。
|
- **x** (Tensor) - shape为 :math:`(N, C_{in}, L_{in})` 的Tensor,数据类型为float16或float32。
|
||||||
|
|
||||||
**输出:**
|
**输出:**
|
||||||
|
|
||||||
|
@ -25,7 +25,7 @@ mindspore.nn.AdaptiveMaxPool1d
|
||||||
|
|
||||||
**异常:**
|
**异常:**
|
||||||
|
|
||||||
- **TypeError** - `x` 不是float16或float32或float64。
|
- **TypeError** - `x` 不是float16或float32。
|
||||||
- **TypeError** - `output_size` 不是int。
|
- **TypeError** - `output_size` 不是int。
|
||||||
- **ValueError** - `output_size` 小于1。
|
- **ValueError** - `output_size` 小于1。
|
||||||
- **ValueError** - `x` 的最后一个维度小于 `output_size`。
|
- **ValueError** - `x` 的最后一个维度小于 `output_size`。
|
||||||
|
|
|
@ -421,8 +421,8 @@ def _adaptive_shape_check(in_shape, output_size, prim_name):
|
||||||
@constexpr
|
@constexpr
|
||||||
def _adaptive_dtype_check(x_dtype, prim_name):
|
def _adaptive_dtype_check(x_dtype, prim_name):
|
||||||
"""Check dtype."""
|
"""Check dtype."""
|
||||||
if x_dtype not in [mstype.float16, mstype.float32, mstype.float64]:
|
if x_dtype not in [mstype.float16, mstype.float32]:
|
||||||
raise TypeError("For {}, the x_dtype must be float16, float32 or float64, "
|
raise TypeError("For {}, the x_dtype must be float16 or float32, "
|
||||||
"but got {}.".format(prim_name, x_dtype))
|
"but got {}.".format(prim_name, x_dtype))
|
||||||
|
|
||||||
|
|
||||||
|
@ -445,14 +445,14 @@ class AdaptiveAvgPool1d(Cell):
|
||||||
output_size (int): the target output size :math:`L_{out}`.
|
output_size (int): the target output size :math:`L_{out}`.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, L_{in})`, with float16, float32 or float64 data type.
|
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, L_{in})`, with float16 or float32 data type.
|
||||||
|
|
||||||
Outputs:
|
Outputs:
|
||||||
Tensor of shape :math:`(N, C_{in}, L_{out})`, has the same type as `x`.
|
Tensor of shape :math:`(N, C_{in}, L_{out})`, has the same type as `x`.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
TypeError: If `output_size` is not an int.
|
TypeError: If `output_size` is not an int.
|
||||||
TypeError: If `x` is neither float16 nor float32 nor float64.
|
TypeError: If `x` is neither float16 nor float32.
|
||||||
ValueError: If `output_size` is less than 1.
|
ValueError: If `output_size` is less than 1.
|
||||||
ValueError: If length of shape of `x` is not equal to 3.
|
ValueError: If length of shape of `x` is not equal to 3.
|
||||||
ValueError: If the last dimension of `x` is smaller than `output_size`.
|
ValueError: If the last dimension of `x` is smaller than `output_size`.
|
||||||
|
@ -463,6 +463,9 @@ class AdaptiveAvgPool1d(Cell):
|
||||||
``Ascend`` ``GPU`` ``CPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
|
>>> import mindspore
|
||||||
|
>>> from mindspore import Tensor, nn
|
||||||
|
>>> import numpy as np
|
||||||
>>> pool = nn.AdaptiveAvgPool1d(output_size=2)
|
>>> pool = nn.AdaptiveAvgPool1d(output_size=2)
|
||||||
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
|
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
|
||||||
>>> output = pool(x)
|
>>> output = pool(x)
|
||||||
|
@ -519,13 +522,13 @@ class AdaptiveMaxPool1d(Cell):
|
||||||
output_size (int): the target output size :math:`L_{out}`.
|
output_size (int): the target output size :math:`L_{out}`.
|
||||||
|
|
||||||
Inputs:
|
Inputs:
|
||||||
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, L_{in})`, with float16, float32 or float64 data type.
|
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, L_{in})`, with float16 or float32 data type.
|
||||||
|
|
||||||
Outputs:
|
Outputs:
|
||||||
Tensor of shape :math:`(N, C_{in}, L_{out})`, has the same type as `x`.
|
Tensor of shape :math:`(N, C_{in}, L_{out})`, has the same type as `x`.
|
||||||
|
|
||||||
Raises:
|
Raises:
|
||||||
TypeError: If `x` is neither float16 nor float32 nor float64.
|
TypeError: If `x` is neither float16 nor float32.
|
||||||
TypeError: If `output_size` is not an int.
|
TypeError: If `output_size` is not an int.
|
||||||
ValueError: If `output_size` is less than 1.
|
ValueError: If `output_size` is less than 1.
|
||||||
ValueError: If the last dimension of `x` is smaller than `output_size`.
|
ValueError: If the last dimension of `x` is smaller than `output_size`.
|
||||||
|
@ -537,6 +540,9 @@ class AdaptiveMaxPool1d(Cell):
|
||||||
``Ascend`` ``GPU`` ``CPU``
|
``Ascend`` ``GPU`` ``CPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
|
>>> import mindspore
|
||||||
|
>>> from mindspore import Tensor, nn
|
||||||
|
>>> import numpy as np
|
||||||
>>> pool = nn.AdaptiveMaxPool1d(output_size=3)
|
>>> pool = nn.AdaptiveMaxPool1d(output_size=3)
|
||||||
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
|
>>> x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
|
||||||
>>> output = pool(x)
|
>>> output = pool(x)
|
||||||
|
|
Loading…
Reference in New Issue