forked from mindspore-Ecosystem/mindspore
!20576 [assistant][ops] add new dataset loading operator LJSpeechDataset
Merge pull request !20576 from 杨旭华/LJSpeechDataset
This commit is contained in:
commit
58b69a05ee
|
@ -103,6 +103,7 @@
|
|||
#include "minddata/dataset/engine/ir/datasetops/source/fashion_mnist_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/flickr_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/image_folder_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/lj_speech_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/manifest_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/minddata_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/photo_tour_node.h"
|
||||
|
@ -1209,6 +1210,27 @@ ImageFolderDataset::ImageFolderDataset(const std::vector<char> &dataset_dir, boo
|
|||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
LJSpeechDataset::LJSpeechDataset(const std::vector<char> &dataset_dir, const std::shared_ptr<Sampler> &sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache) {
|
||||
auto sampler_obj = sampler ? sampler->Parse() : nullptr;
|
||||
auto ds = std::make_shared<LJSpeechNode>(CharToString(dataset_dir), sampler_obj, cache);
|
||||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
LJSpeechDataset::LJSpeechDataset(const std::vector<char> &dataset_dir, const Sampler *sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache) {
|
||||
auto sampler_obj = sampler ? sampler->Parse() : nullptr;
|
||||
auto ds = std::make_shared<LJSpeechNode>(CharToString(dataset_dir), sampler_obj, cache);
|
||||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
LJSpeechDataset::LJSpeechDataset(const std::vector<char> &dataset_dir, const std::reference_wrapper<Sampler> sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache) {
|
||||
auto sampler_obj = sampler.get().Parse();
|
||||
auto ds = std::make_shared<LJSpeechNode>(CharToString(dataset_dir), sampler_obj, cache);
|
||||
ir_node_ = std::static_pointer_cast<DatasetNode>(ds);
|
||||
}
|
||||
|
||||
ManifestDataset::ManifestDataset(const std::vector<char> &dataset_file, const std::vector<char> &usage,
|
||||
const std::shared_ptr<Sampler> &sampler,
|
||||
const std::map<std::vector<char>, int32_t> &class_indexing, bool decode,
|
||||
|
|
|
@ -47,6 +47,7 @@
|
|||
|
||||
// IR leaf nodes disabled for android
|
||||
#ifndef ENABLE_ANDROID
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/lj_speech_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/manifest_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/minddata_node.h"
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/photo_tour_node.h"
|
||||
|
@ -264,6 +265,16 @@ PYBIND_REGISTER(ImageFolderNode, 2, ([](const py::module *m) {
|
|||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(LJSpeechNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<LJSpeechNode, DatasetNode, std::shared_ptr<LJSpeechNode>>(*m, "LJSpeechNode",
|
||||
"to create a LJSpeechNode")
|
||||
.def(py::init([](std::string dataset_dir, py::handle sampler) {
|
||||
auto lj_speech = std::make_shared<LJSpeechNode>(dataset_dir, toSamplerObj(sampler), nullptr);
|
||||
THROW_IF_ERROR(lj_speech->ValidateParams());
|
||||
return lj_speech;
|
||||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(ManifestNode, 2, ([](const py::module *m) {
|
||||
(void)py::class_<ManifestNode, DatasetNode, std::shared_ptr<ManifestNode>>(*m, "ManifestNode",
|
||||
"to create a ManifestNode")
|
||||
|
|
|
@ -16,10 +16,13 @@
|
|||
|
||||
#include "minddata/dataset/audio/kernels/audio_utils.h"
|
||||
|
||||
#include <fstream>
|
||||
|
||||
#include "mindspore/core/base/float16.h"
|
||||
#include "minddata/dataset/core/type_id.h"
|
||||
#include "minddata/dataset/kernels/data/data_utils.h"
|
||||
#include "minddata/dataset/util/random.h"
|
||||
#include "utils/file_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
|
@ -850,5 +853,43 @@ Status GenerateWaveTable(std::shared_ptr<Tensor> *output, const DataType &type,
|
|||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status ReadWaveFile(const std::string &wav_file_dir, std::vector<float> *waveform_vec, int32_t *sample_rate) {
|
||||
RETURN_UNEXPECTED_IF_NULL(waveform_vec);
|
||||
RETURN_UNEXPECTED_IF_NULL(sample_rate);
|
||||
auto wav_realpath = FileUtils::GetRealPath(wav_file_dir.data());
|
||||
if (!wav_realpath.has_value()) {
|
||||
MS_LOG(ERROR) << "Invalid file, get real path failed, path=" << wav_file_dir;
|
||||
RETURN_STATUS_UNEXPECTED("Invalid file, get real path failed, path=" + wav_file_dir);
|
||||
}
|
||||
|
||||
const float kMaxVal = 32767.0;
|
||||
const int kDataMove = 2;
|
||||
Path file_path(wav_realpath.value());
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(file_path.Exists() && !file_path.IsDirectory(),
|
||||
"Invalid file, failed to find metadata file:" + file_path.ToString());
|
||||
std::ifstream in(file_path.ToString(), std::ios::in | std::ios::binary);
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(in.is_open(), "Invalid file, failed to open metadata file:" + file_path.ToString() +
|
||||
", make sure the file not damaged or permission denied.");
|
||||
WavHeader *header = new WavHeader();
|
||||
in.read(reinterpret_cast<char *>(header), sizeof(WavHeader));
|
||||
*sample_rate = header->sampleRate;
|
||||
std::unique_ptr<char[]> data = std::make_unique<char[]>(header->subChunk2Size);
|
||||
in.read(data.get(), header->subChunk2Size);
|
||||
float bytesPerSample = header->bitsPerSample / 8;
|
||||
if (bytesPerSample == 0) {
|
||||
in.close();
|
||||
delete header;
|
||||
return Status(StatusCode::kMDUnexpectedError, __LINE__, __FILE__, "ReadWaveFile: divide zero error.");
|
||||
}
|
||||
int numSamples = header->subChunk2Size / bytesPerSample;
|
||||
waveform_vec->resize(numSamples);
|
||||
for (int i = 0; i < numSamples; i++) {
|
||||
(*waveform_vec)[i] = static_cast<int16_t>(data[kDataMove * i] / kMaxVal);
|
||||
}
|
||||
in.close();
|
||||
delete header;
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -989,6 +989,31 @@ Status Flanger(const std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *out
|
|||
RETURN_IF_NOT_OK(TypeCast(output_waveform, output, input->type()));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// A brief structure of wave file header.
|
||||
struct WavHeader {
|
||||
int8_t chunkID[4] = {0};
|
||||
int32_t chunkSize = 0;
|
||||
int8_t format[4] = {0};
|
||||
int8_t subChunk1ID[4] = {0};
|
||||
int32_t subChunk1Size = 0;
|
||||
int16_t audioFormat = 0;
|
||||
int16_t numChannels = 0;
|
||||
int32_t sampleRate = 0;
|
||||
int32_t byteRate = 0;
|
||||
int16_t byteAlign = 0;
|
||||
int16_t bitsPerSample = 0;
|
||||
int8_t subChunk2ID[4] = {0};
|
||||
int32_t subChunk2Size = 0;
|
||||
WavHeader() {}
|
||||
};
|
||||
|
||||
/// \brief Get an audio data from a wav file and store into a vector.
|
||||
/// \param wav_file_dir: wave file dir.
|
||||
/// \param waveform_vec: vector of waveform.
|
||||
/// \param sample_rate: sample rate.
|
||||
/// \return Status code.
|
||||
Status ReadWaveFile(const std::string &wav_file_dir, std::vector<float> *waveform_vec, int32_t *sample_rate);
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_AUDIO_UTILS_H_
|
||||
|
|
|
@ -24,6 +24,7 @@ set(DATASET_ENGINE_DATASETOPS_SOURCE_SRC_FILES
|
|||
qmnist_op.cc
|
||||
emnist_op.cc
|
||||
fake_image_op.cc
|
||||
lj_speech_op.cc
|
||||
places365_op.cc
|
||||
photo_tour_op.cc
|
||||
fashion_mnist_op.cc
|
||||
|
|
|
@ -0,0 +1,153 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/engine/datasetops/source/lj_speech_op.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
#include <utility>
|
||||
|
||||
#include "minddata/dataset/audio/kernels/audio_utils.h"
|
||||
#include "minddata/dataset/core/config_manager.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sequential_sampler.h"
|
||||
#include "minddata/dataset/engine/execution_tree.h"
|
||||
#include "minddata/dataset/util/path.h"
|
||||
#include "utils/file_utils.h"
|
||||
#include "utils/ms_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
LJSpeechOp::LJSpeechOp(const std::string &file_dir, int32_t num_workers, int32_t queue_size,
|
||||
std::unique_ptr<DataSchema> data_schema, std::shared_ptr<SamplerRT> sampler)
|
||||
: MappableLeafOp(num_workers, queue_size, std::move(sampler)),
|
||||
folder_path_(file_dir),
|
||||
data_schema_(std::move(data_schema)) {}
|
||||
|
||||
Status LJSpeechOp::PrepareData() {
|
||||
auto real_path = FileUtils::GetRealPath(folder_path_.data());
|
||||
if (!real_path.has_value()) {
|
||||
RETURN_STATUS_UNEXPECTED("Invalid file, get real path failed, path=" + folder_path_);
|
||||
}
|
||||
Path root_folder(real_path.value());
|
||||
Path metadata_file_path = root_folder / "metadata.csv";
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(metadata_file_path.Exists() && !metadata_file_path.IsDirectory(),
|
||||
"Invalid file, failed to find metadata file: " + metadata_file_path.ToString());
|
||||
std::ifstream csv_reader(metadata_file_path.ToString());
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(csv_reader.is_open(),
|
||||
"Invalid file, failed to open metadata file: " + metadata_file_path.ToString() +
|
||||
", make sure file not damaged or permission denied.");
|
||||
std::string line = "";
|
||||
while (getline(csv_reader, line)) {
|
||||
int32_t last_pos = 0, curr_pos = 0;
|
||||
std::vector<std::string> row;
|
||||
while (curr_pos < line.size()) {
|
||||
if (line[curr_pos] == '|') {
|
||||
row.emplace_back(line.substr(last_pos, curr_pos - last_pos));
|
||||
last_pos = curr_pos + 1;
|
||||
}
|
||||
++curr_pos;
|
||||
}
|
||||
row.emplace_back(line.substr(last_pos, curr_pos - last_pos));
|
||||
meta_info_list_.emplace_back(row);
|
||||
}
|
||||
if (meta_info_list_.empty()) {
|
||||
csv_reader.close();
|
||||
RETURN_STATUS_UNEXPECTED(
|
||||
"Reading failed, unable to read valid data from the metadata file: " + metadata_file_path.ToString() + ".");
|
||||
}
|
||||
num_rows_ = meta_info_list_.size();
|
||||
csv_reader.close();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Load 1 TensorRow (waveform, sample_rate, transcription, normalized_transcription).
|
||||
// 1 function call produces 1 TensorTow
|
||||
Status LJSpeechOp::LoadTensorRow(row_id_type index, TensorRow *trow) {
|
||||
int32_t num_items = meta_info_list_.size();
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(index >= 0 && index < num_items, "The input index is out of range.");
|
||||
std::shared_ptr<Tensor> waveform;
|
||||
std::shared_ptr<Tensor> sample_rate_scalar;
|
||||
std::shared_ptr<Tensor> transcription, normalized_transcription;
|
||||
std::string file_name_pref = meta_info_list_[index][0], transcription_str = meta_info_list_[index][1],
|
||||
normalized_transcription_str = meta_info_list_[index][2];
|
||||
int32_t sample_rate;
|
||||
std::string file_name = file_name_pref + ".wav";
|
||||
Path root_folder(folder_path_);
|
||||
Path wav_file_path = root_folder / "wavs" / file_name;
|
||||
Path metadata_file_path = root_folder / "metadata.csv";
|
||||
std::vector<float> waveform_vec;
|
||||
RETURN_IF_NOT_OK(ReadWaveFile(wav_file_path.ToString(), &waveform_vec, &sample_rate));
|
||||
RETURN_IF_NOT_OK(Tensor::CreateFromVector(waveform_vec, &waveform));
|
||||
RETURN_IF_NOT_OK(waveform->ExpandDim(0));
|
||||
RETURN_IF_NOT_OK(Tensor::CreateScalar(sample_rate, &sample_rate_scalar));
|
||||
RETURN_IF_NOT_OK(Tensor::CreateScalar(transcription_str, &transcription));
|
||||
RETURN_IF_NOT_OK(Tensor::CreateScalar(normalized_transcription_str, &normalized_transcription));
|
||||
(*trow) = TensorRow(index, {waveform, sample_rate_scalar, transcription, normalized_transcription});
|
||||
// Add file path info
|
||||
trow->setPath({wav_file_path.ToString(), metadata_file_path.ToString(), metadata_file_path.ToString(),
|
||||
metadata_file_path.ToString()});
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
void LJSpeechOp::Print(std::ostream &out, bool show_all) const {
|
||||
if (!show_all) {
|
||||
// Call the super class for displaying any common 1-liner info
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal 1-liner info for this op
|
||||
out << "\n";
|
||||
} else {
|
||||
// Call the super class for displaying any common detailed info
|
||||
ParallelOp::Print(out, show_all);
|
||||
// Then show any custom derived-internal stuff
|
||||
out << "\nNumber of rows: " << num_rows_ << "\nLJSpeech directory: " << folder_path_ << "\n\n";
|
||||
}
|
||||
}
|
||||
|
||||
Status LJSpeechOp::CountTotalRows(const std::string &dir, int64_t *count) {
|
||||
auto real_path = FileUtils::GetRealPath(dir.data());
|
||||
if (!real_path.has_value()) {
|
||||
RETURN_STATUS_UNEXPECTED("Invalid file, get real path failed, path=" + dir);
|
||||
}
|
||||
Path root_folder(real_path.value());
|
||||
Path metadata_file_path = root_folder / "metadata.csv";
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(metadata_file_path.Exists() && !metadata_file_path.IsDirectory(),
|
||||
"Invalid file, failed to find metadata file: " + metadata_file_path.ToString());
|
||||
std::ifstream csv_reader(metadata_file_path.ToString());
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(csv_reader.is_open(),
|
||||
"Invalid file, failed to open metadata file: " + metadata_file_path.ToString() +
|
||||
", make sure file not damaged or permission denied.");
|
||||
std::string line = "";
|
||||
int64_t cnt = 0;
|
||||
while (getline(csv_reader, line)) {
|
||||
++cnt;
|
||||
}
|
||||
*count = cnt;
|
||||
csv_reader.close();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status LJSpeechOp::ComputeColMap() {
|
||||
// set the column name map (base class field)
|
||||
if (column_name_id_map_.empty()) {
|
||||
for (int32_t i = 0; i < data_schema_->NumColumns(); ++i) {
|
||||
column_name_id_map_[data_schema_->Column(i).Name()] = i;
|
||||
}
|
||||
} else {
|
||||
MS_LOG(WARNING) << "Column name map is already set!";
|
||||
}
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,86 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_LJ_SPEECH_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_LJ_SPEECH_OP_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
|
||||
#include "minddata/dataset/engine/data_schema.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/mappable_leaf_op.h"
|
||||
#include "minddata/dataset/engine/datasetops/source/sampler/sampler.h"
|
||||
#include "minddata/dataset/util/services.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
#include "minddata/dataset/util/wait_post.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
/// \brief Read LJSpeech dataset.
|
||||
class LJSpeechOp : public MappableLeafOp {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] file_dir Directory of lj_speech dataset.
|
||||
/// \param[in] num_workers Number of workers reading audios in parallel.
|
||||
/// \param[in] queue_size Connector queue size.
|
||||
/// \param[in] data_schema Data schema of lj_speech dataset.
|
||||
/// \param[in] sampler Sampler tells LJSpeechOp what to read.
|
||||
LJSpeechOp(const std::string &file_dir, int32_t num_workers, int32_t queue_size,
|
||||
std::unique_ptr<DataSchema> data_schema, std::shared_ptr<SamplerRT> sampler);
|
||||
|
||||
/// \brief Destructor.
|
||||
~LJSpeechOp() = default;
|
||||
|
||||
/// \brief A print method typically used for debugging.
|
||||
/// \param[out] out The output stream to write output to.
|
||||
/// \param[in] show_all A bool to control if you want to show all info or just a summary.
|
||||
void Print(std::ostream &out, bool show_all) const override;
|
||||
|
||||
/// \brief Function to count the number of samples in the LJSpeech dataset.
|
||||
/// \param[in] dir Path to the directory of LJSpeech dataset.
|
||||
/// \param[out] count Output arg that will hold the actual dataset size.
|
||||
/// \return Status
|
||||
static Status CountTotalRows(const std::string &dir, int64_t *count);
|
||||
|
||||
/// \brief Op name getter.
|
||||
/// \return Name of the current Op.
|
||||
std::string Name() const override { return "LJSpeechOp"; }
|
||||
|
||||
protected:
|
||||
/// \brief Called first when function is called.
|
||||
/// \return Status
|
||||
Status PrepareData() override;
|
||||
|
||||
private:
|
||||
/// \brief Load a tensor row.
|
||||
/// \param[in] index Index need to load.
|
||||
/// \param[out] trow Waveform & sample_rate & transcription & normalized_transcription read into this tensor row.
|
||||
/// \return Status the status code returned.
|
||||
Status LoadTensorRow(row_id_type index, TensorRow *trow) override;
|
||||
|
||||
/// \brief Private function for computing the assignment of the column name map.
|
||||
/// \return Status
|
||||
Status ComputeColMap() override;
|
||||
|
||||
std::string folder_path_;
|
||||
std::unique_ptr<DataSchema> data_schema_;
|
||||
std::vector<std::vector<std::string>> meta_info_list_; // the shape is (N, 3)
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_DATASETOPS_SOURCE_LJ_SPEECH_OP_H_
|
|
@ -91,6 +91,7 @@ constexpr char kFashionMnistNode[] = "FashionMnistDataset";
|
|||
constexpr char kFlickrNode[] = "FlickrDataset";
|
||||
constexpr char kGeneratorNode[] = "GeneratorDataset";
|
||||
constexpr char kImageFolderNode[] = "ImageFolderDataset";
|
||||
constexpr char kLJSpeechNode[] = "LJSpeechDataset";
|
||||
constexpr char kManifestNode[] = "ManifestDataset";
|
||||
constexpr char kMindDataNode[] = "MindDataDataset";
|
||||
constexpr char kMnistNode[] = "MnistDataset";
|
||||
|
|
|
@ -19,6 +19,7 @@ set(DATASET_ENGINE_IR_DATASETOPS_SOURCE_SRC_FILES
|
|||
fashion_mnist_node.cc
|
||||
flickr_node.cc
|
||||
image_folder_node.cc
|
||||
lj_speech_node.cc
|
||||
manifest_node.cc
|
||||
minddata_node.cc
|
||||
mnist_node.cc
|
||||
|
|
|
@ -0,0 +1,117 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/engine/ir/datasetops/source/lj_speech_node.h"
|
||||
|
||||
#include <utility>
|
||||
|
||||
#include "minddata/dataset/engine/datasetops/source/lj_speech_op.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
// Constructor for LJSpeechNode.
|
||||
LJSpeechNode::LJSpeechNode(const std::string &dataset_dir, std::shared_ptr<SamplerObj> sampler,
|
||||
std::shared_ptr<DatasetCache> cache)
|
||||
: MappableSourceNode(std::move(cache)), dataset_dir_(dataset_dir), sampler_(sampler) {}
|
||||
|
||||
std::shared_ptr<DatasetNode> LJSpeechNode::Copy() {
|
||||
std::shared_ptr<SamplerObj> sampler = (sampler_ == nullptr) ? nullptr : sampler_->SamplerCopy();
|
||||
auto node = std::make_shared<LJSpeechNode>(dataset_dir_, sampler, cache_);
|
||||
return node;
|
||||
}
|
||||
|
||||
void LJSpeechNode::Print(std::ostream &out) const {
|
||||
out << (Name() + "(cache: " + ((cache_ != nullptr) ? "true" : "false") + ")");
|
||||
}
|
||||
|
||||
Status LJSpeechNode::ValidateParams() {
|
||||
RETURN_IF_NOT_OK(DatasetNode::ValidateParams());
|
||||
RETURN_IF_NOT_OK(ValidateDatasetDirParam("LJSpeechNode", dataset_dir_));
|
||||
RETURN_IF_NOT_OK(ValidateDatasetSampler("LJSpeechNode", sampler_));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Function to build LJSpeechOp for LJSpeech.
|
||||
Status LJSpeechNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) {
|
||||
// Do internal Schema generation.
|
||||
auto schema = std::make_unique<DataSchema>();
|
||||
RETURN_IF_NOT_OK(
|
||||
schema->AddColumn(ColDescriptor("waveform", DataType(DataType::DE_FLOAT32), TensorImpl::kFlexible, 1)));
|
||||
TensorShape sample_rate_scalar = TensorShape::CreateScalar();
|
||||
TensorShape trans_scalar = TensorShape::CreateScalar();
|
||||
TensorShape nom_trans_scalar = TensorShape::CreateScalar();
|
||||
RETURN_IF_NOT_OK(schema->AddColumn(
|
||||
ColDescriptor("sample_rate", DataType(DataType::DE_INT32), TensorImpl::kFlexible, 0, &sample_rate_scalar)));
|
||||
RETURN_IF_NOT_OK(schema->AddColumn(
|
||||
ColDescriptor("transcription", DataType(DataType::DE_STRING), TensorImpl::kFlexible, 0, &trans_scalar)));
|
||||
RETURN_IF_NOT_OK(schema->AddColumn(ColDescriptor("normalized_transcription", DataType(DataType::DE_STRING),
|
||||
TensorImpl::kFlexible, 0, &nom_trans_scalar)));
|
||||
std::shared_ptr<SamplerRT> sampler_rt = nullptr;
|
||||
RETURN_IF_NOT_OK(sampler_->SamplerBuild(&sampler_rt));
|
||||
|
||||
auto lj_speech_op = std::make_shared<LJSpeechOp>(dataset_dir_, num_workers_, connector_que_size_, std::move(schema),
|
||||
std::move(sampler_rt));
|
||||
lj_speech_op->SetTotalRepeats(GetTotalRepeats());
|
||||
lj_speech_op->SetNumRepeatsPerEpoch(GetNumRepeatsPerEpoch());
|
||||
node_ops->push_back(lj_speech_op);
|
||||
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get the shard id of node.
|
||||
Status LJSpeechNode::GetShardId(int32_t *shard_id) {
|
||||
*shard_id = sampler_->ShardId();
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
// Get Dataset size.
|
||||
Status LJSpeechNode::GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) {
|
||||
if (dataset_size_ > 0) {
|
||||
*dataset_size = dataset_size_;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
int64_t num_rows = 0, sample_size = 0;
|
||||
RETURN_IF_NOT_OK(LJSpeechOp::CountTotalRows(dataset_dir_, &num_rows));
|
||||
std::shared_ptr<SamplerRT> sampler_rt = nullptr;
|
||||
RETURN_IF_NOT_OK(sampler_->SamplerBuild(&sampler_rt));
|
||||
sample_size = sampler_rt->CalculateNumSamples(num_rows);
|
||||
if (sample_size == -1) {
|
||||
RETURN_IF_NOT_OK(size_getter->DryRun(shared_from_this(), &sample_size));
|
||||
}
|
||||
|
||||
*dataset_size = sample_size;
|
||||
dataset_size_ = *dataset_size;
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
Status LJSpeechNode::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args, sampler_args;
|
||||
RETURN_IF_NOT_OK(sampler_->to_json(&sampler_args));
|
||||
args["sampler"] = sampler_args;
|
||||
args["num_parallel_workers"] = num_workers_;
|
||||
args["dataset_dir"] = dataset_dir_;
|
||||
if (cache_ != nullptr) {
|
||||
nlohmann::json cache_args;
|
||||
RETURN_IF_NOT_OK(cache_->to_json(&cache_args));
|
||||
args["cache"] = cache_args;
|
||||
}
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,95 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_LJ_SPEECH_NODE_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_LJ_SPEECH_NODE_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/engine/ir/datasetops/dataset_node.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
/// \brief Read LJSpeech dataset.
|
||||
class LJSpeechNode : public MappableSourceNode {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
LJSpeechNode(const std::string &dataset_dir, std::shared_ptr<SamplerObj> sampler,
|
||||
std::shared_ptr<DatasetCache> cache);
|
||||
|
||||
/// \brief Destructor.
|
||||
~LJSpeechNode() = default;
|
||||
|
||||
/// \brief Node name getter.
|
||||
/// \return Name of the current node.
|
||||
std::string Name() const override { return kLJSpeechNode; }
|
||||
|
||||
/// \brief Print the description.
|
||||
/// \param[out] out The output stream to write output to.
|
||||
void Print(std::ostream &out) const override;
|
||||
|
||||
/// \brief Copy the node to a new object.
|
||||
/// \return A shared pointer to the new copy.
|
||||
std::shared_ptr<DatasetNode> Copy() override;
|
||||
|
||||
/// \brief A base class override function to create the required runtime dataset op objects for this class.
|
||||
/// \param[in] node_ops A vector containing shared pointer to the Dataset Ops that this object will create.
|
||||
/// \return Status Status::OK() if build successfully.
|
||||
Status Build(std::vector<std::shared_ptr<DatasetOp>> *const node_ops) override;
|
||||
|
||||
/// \brief Parameters validation.
|
||||
/// \return Status Status::OK() if all the parameters are valid.
|
||||
Status ValidateParams() override;
|
||||
|
||||
/// \brief Get the shard id of node.
|
||||
/// \param[in] shard_id
|
||||
/// \return Status Status::OK() if get shard id successfully.
|
||||
Status GetShardId(int32_t *shard_id) override;
|
||||
|
||||
/// \brief Base-class override for GetDatasetSize.
|
||||
/// \param[in] size_getter Shared pointer to DatasetSizeGetter.
|
||||
/// \param[in] estimate This is only supported by some of the ops and it's used to speed up the process of getting
|
||||
/// dataset size at the expense of accuracy.
|
||||
/// \param[out] dataset_size The size of the dataset.
|
||||
/// \return Status of the function.
|
||||
Status GetDatasetSize(const std::shared_ptr<DatasetSizeGetter> &size_getter, bool estimate,
|
||||
int64_t *dataset_size) override;
|
||||
|
||||
/// \brief Getter functions.
|
||||
/// \return Path string of the dataset.
|
||||
const std::string &DatasetDir() const { return dataset_dir_; }
|
||||
|
||||
/// \brief Get the arguments of node.
|
||||
/// \param[out] out_json JSON string of all attributes.
|
||||
/// \return Status of the function.
|
||||
Status to_json(nlohmann::json *out_json) override;
|
||||
|
||||
/// \brief Sampler getter.
|
||||
/// \return SamplerObj of the current node.
|
||||
std::shared_ptr<SamplerObj> Sampler() override { return sampler_; }
|
||||
|
||||
/// \brief Sampler setter.
|
||||
void SetSampler(std::shared_ptr<SamplerObj> sampler) override { sampler_ = sampler; }
|
||||
|
||||
private:
|
||||
std::string dataset_dir_;
|
||||
std::shared_ptr<SamplerObj> sampler_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_IR_DATASETOPS_SOURCE_LJ_SPEECH_NODE_H_
|
|
@ -2506,6 +2506,75 @@ inline std::shared_ptr<ImageFolderDataset> ImageFolder(const std::string &datase
|
|||
MapStringToChar(class_indexing), cache);
|
||||
}
|
||||
|
||||
/// \class LJSpeechDataset
|
||||
/// \brief A source dataset for reading and parsing LJSpeech dataset.
|
||||
class LJSpeechDataset : public Dataset {
|
||||
public:
|
||||
/// \brief Constructor of LJSpeechDataset.
|
||||
/// \param[in] dataset_file The dataset file to be read.
|
||||
/// \param[in] sampler Shared pointer to a sampler object used to choose samples from the dataset. If sampler is not
|
||||
/// given, a `RandomSampler` will be used to randomly iterate the entire dataset.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
LJSpeechDataset(const std::vector<char> &dataset_dir, const std::shared_ptr<Sampler> &sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Constructor of LJSpeechDataset.
|
||||
/// \param[in] dataset_file The dataset file to be read.
|
||||
/// \param[in] sampler Sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
LJSpeechDataset(const std::vector<char> &dataset_dir, const std::reference_wrapper<Sampler> sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Constructor of LJSpeechDataset.
|
||||
/// \param[in] dataset_file The dataset file to be read.
|
||||
/// \param[in] sampler Raw pointer to a sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use.
|
||||
LJSpeechDataset(const std::vector<char> &dataset_dir, const Sampler *sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache);
|
||||
|
||||
/// \brief Destructor of LJSpeechDataset.
|
||||
~LJSpeechDataset() = default;
|
||||
};
|
||||
|
||||
/// \brief Function to create a LJSpeech Dataset.
|
||||
/// \notes The generated dataset has four columns ["waveform", "sample_rate", "transcription",
|
||||
/// "normalized_transcription"].
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] sampler Shared pointer to a sampler object used to choose samples from the dataset. If sampler is not
|
||||
/// given, a `RandomSampler` will be used to randomly iterate the entire dataset (default = RandomSampler()).
|
||||
/// \param[in] cache Tensor cache to use. (default=nullptr, which means no cache is used).
|
||||
/// \return Shared pointer to the current Dataset.
|
||||
inline std::shared_ptr<LJSpeechDataset> LJSpeech(
|
||||
const std::string &dataset_dir, const std::shared_ptr<Sampler> &sampler = std::make_shared<RandomSampler>(),
|
||||
const std::shared_ptr<DatasetCache> &cache = nullptr) {
|
||||
return std::make_shared<LJSpeechDataset>(StringToChar(dataset_dir), sampler, cache);
|
||||
}
|
||||
|
||||
/// \brief Function to create a LJSpeech Dataset.
|
||||
/// \notes The generated dataset has four columns ["waveform", "sample_rate", "transcription",
|
||||
/// "normalized_transcription"].
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] sampler Raw pointer to a sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use. (default=nullptr, which means no cache is used).
|
||||
/// \return Shared pointer to the current Dataset.
|
||||
inline std::shared_ptr<LJSpeechDataset> LJSpeech(const std::string &dataset_dir, Sampler *sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache = nullptr) {
|
||||
return std::make_shared<LJSpeechDataset>(StringToChar(dataset_dir), sampler, cache);
|
||||
}
|
||||
|
||||
/// \brief Function to create a LJSpeech Dataset.
|
||||
/// \notes The generated dataset has four columns ["waveform", "sample_rate", "transcription",
|
||||
/// "normalized_transcription"].
|
||||
/// \param[in] dataset_dir Path to the root directory that contains the dataset.
|
||||
/// \param[in] sampler Sampler object used to choose samples from the dataset.
|
||||
/// \param[in] cache Tensor cache to use. (default=nullptr, which means no cache is used).
|
||||
/// \return Shared pointer to the current Dataset.
|
||||
inline std::shared_ptr<LJSpeechDataset> LJSpeech(const std::string &dataset_dir,
|
||||
const std::reference_wrapper<Sampler> sampler,
|
||||
const std::shared_ptr<DatasetCache> &cache = nullptr) {
|
||||
return std::make_shared<LJSpeechDataset>(StringToChar(dataset_dir), sampler, cache);
|
||||
}
|
||||
|
||||
/// \class ManifestDataset
|
||||
/// \brief A source dataset for reading and parsing Manifest dataset.
|
||||
class ManifestDataset : public Dataset {
|
||||
|
|
|
@ -44,6 +44,7 @@ class Sampler : std::enable_shared_from_this<Sampler> {
|
|||
friend class FashionMnistDataset;
|
||||
friend class FlickrDataset;
|
||||
friend class ImageFolderDataset;
|
||||
friend class LJSpeechDataset;
|
||||
friend class ManifestDataset;
|
||||
friend class MindDataDataset;
|
||||
friend class MnistDataset;
|
||||
|
|
|
@ -68,7 +68,7 @@ from .validators import check_batch, check_shuffle, check_map, check_filter, che
|
|||
check_tuple_iterator, check_dict_iterator, check_schema, check_to_device_send, check_flickr_dataset, \
|
||||
check_sb_dataset, check_flowers102dataset, check_cityscapes_dataset, check_usps_dataset, check_div2k_dataset, \
|
||||
check_sbu_dataset, check_qmnist_dataset, check_emnist_dataset, check_fake_image_dataset, check_places365_dataset, \
|
||||
check_photo_tour_dataset, check_ag_news_dataset, check_dbpedia_dataset
|
||||
check_photo_tour_dataset, check_ag_news_dataset, check_dbpedia_dataset, check_lj_speech_dataset
|
||||
from ..core.config import get_callback_timeout, _init_device_info, get_enable_shared_mem, get_num_parallel_workers, \
|
||||
get_prefetch_size
|
||||
from ..core.datatypes import mstype_to_detype, mstypelist_to_detypelist
|
||||
|
@ -6843,6 +6843,142 @@ class Flowers102Dataset(GeneratorDataset):
|
|||
return class_dict
|
||||
|
||||
|
||||
class LJSpeechDataset(MappableDataset):
|
||||
"""
|
||||
A source dataset for reading and parsing LJSpeech dataset.
|
||||
|
||||
The generated dataset has four columns :py:obj:`[waveform, sample_rate, transcription, normalized_transcript]`.
|
||||
The tensor of column :py:obj:`waveform` is a tensor of the float32 type.
|
||||
The tensor of column :py:obj:`sample_rate` is a scalar of the int32 type.
|
||||
The tensor of column :py:obj:`transcription` is a scalar of the string type.
|
||||
The tensor of column :py:obj:`normalized_transcript` is a scalar of the string type.
|
||||
|
||||
Args:
|
||||
dataset_dir (str): Path to the root directory that contains the dataset.
|
||||
num_samples (int, optional): The number of audios to be included in the dataset
|
||||
(default=None, all audios).
|
||||
num_parallel_workers (int, optional): Number of workers to read the data
|
||||
(default=None, number set in the config).
|
||||
shuffle (bool, optional): Whether to perform shuffle on the dataset (default=None, expected
|
||||
order behavior shown in the table).
|
||||
sampler (Sampler, optional): Object used to choose samples from the
|
||||
dataset (default=None, expected order behavior shown in the table).
|
||||
num_shards (int, optional): Number of shards that the dataset will be divided
|
||||
into (default=None). When this argument is specified, `num_samples` reflects
|
||||
the maximum sample number of per shard.
|
||||
shard_id (int, optional): The shard ID within num_shards (default=None). This
|
||||
argument can only be specified when num_shards is also specified.
|
||||
cache (DatasetCache, optional): Use tensor caching service to speed up dataset processing.
|
||||
(default=None, which means no cache is used).
|
||||
|
||||
Raises:
|
||||
RuntimeError: If dataset_dir does not contain data files.
|
||||
RuntimeError: If num_parallel_workers exceeds the max thread numbers.
|
||||
RuntimeError: If sampler and shuffle are specified at the same time.
|
||||
RuntimeError: If sampler and sharding are specified at the same time.
|
||||
RuntimeError: If num_shards is specified but shard_id is None.
|
||||
RuntimeError: If shard_id is specified but num_shards is None.
|
||||
ValueError: If shard_id is invalid (< 0 or >= num_shards).
|
||||
|
||||
Note:
|
||||
- This dataset can take in a `sampler`. `sampler` and `shuffle` are mutually exclusive.
|
||||
The table below shows what input arguments are allowed and their expected behavior.
|
||||
|
||||
.. list-table:: Expected Order Behavior of Using `sampler` and `shuffle`
|
||||
:widths: 25 25 50
|
||||
:header-rows: 1
|
||||
|
||||
* - Parameter `sampler`
|
||||
- Parameter `shuffle`
|
||||
- Expected Order Behavior
|
||||
* - None
|
||||
- None
|
||||
- random order
|
||||
* - None
|
||||
- True
|
||||
- random order
|
||||
* - None
|
||||
- False
|
||||
- sequential order
|
||||
* - Sampler object
|
||||
- None
|
||||
- order defined by sampler
|
||||
* - Sampler object
|
||||
- True
|
||||
- not allowed
|
||||
* - Sampler object
|
||||
- False
|
||||
- not allowed
|
||||
|
||||
Examples:
|
||||
>>> lj_speech_dataset_dir = "/path/to/lj_speech_dataset_directory"
|
||||
>>>
|
||||
>>> # 1) Get all samples from LJSPEECH dataset in sequence
|
||||
>>> dataset = ds.LJSpeechDataset(dataset_dir=lj_speech_dataset_dir, shuffle=False)
|
||||
>>>
|
||||
>>> # 2) Randomly select 350 samples from LJSPEECH dataset
|
||||
>>> dataset = ds.LJSpeechDataset(dataset_dir=lj_speech_dataset_dir, num_samples=350, shuffle=True)
|
||||
>>>
|
||||
>>> # 3) Get samples from LJSPEECH dataset for shard 0 in a 2-way distributed training
|
||||
>>> dataset = ds.LJSpeechDataset(dataset_dir=lj_speech_dataset_dir, num_shards=2, shard_id=0)
|
||||
>>>
|
||||
>>> # In LJSPEECH dataset, each dictionary has keys "waveform", "sample_rate", "transcription"
|
||||
>>> # and "normalized_transcript"
|
||||
|
||||
About LJSPEECH dataset:
|
||||
|
||||
This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker
|
||||
reading passages from 7 non-fiction books. A transcription is provided for each clip.
|
||||
Clips vary in length from 1 to 10 seconds and have a total length of approximately 24 hours.
|
||||
|
||||
The texts were published between 1884 and 1964, and are in the public domain.
|
||||
The audio was recorded in 2016-17 by the LibriVox project and is also in the public domain.
|
||||
|
||||
Here is the original LJSPEECH dataset structure.
|
||||
You can unzip the dataset files into the following directory structure and read by MindSpore's API.
|
||||
|
||||
.. code-block::
|
||||
|
||||
.
|
||||
└── LJSpeech-1.1
|
||||
├── README
|
||||
├── metadata.csv
|
||||
└── wavs
|
||||
├── LJ001-0001.wav
|
||||
├── LJ001-0002.wav
|
||||
├── LJ001-0003.wav
|
||||
├── LJ001-0004.wav
|
||||
├── LJ001-0005.wav
|
||||
├── LJ001-0006.wav
|
||||
├── LJ001-0007.wav
|
||||
├── LJ001-0008.wav
|
||||
...
|
||||
├── LJ050-0277.wav
|
||||
└── LJ050-0278.wav
|
||||
|
||||
Citation:
|
||||
|
||||
.. code-block::
|
||||
|
||||
@misc{lj_speech17,
|
||||
author = {Keith Ito and Linda Johnson},
|
||||
title = {The LJ Speech Dataset},
|
||||
howpublished = {url{https://keithito.com/LJ-Speech-Dataset}},
|
||||
year = 2017
|
||||
}
|
||||
"""
|
||||
|
||||
@check_lj_speech_dataset
|
||||
def __init__(self, dataset_dir, num_samples=None, num_parallel_workers=None, shuffle=None,
|
||||
sampler=None, num_shards=None, shard_id=None, cache=None):
|
||||
super().__init__(num_parallel_workers=num_parallel_workers, sampler=sampler, num_samples=num_samples,
|
||||
shuffle=shuffle, num_shards=num_shards, shard_id=shard_id, cache=cache)
|
||||
self.dataset_dir = dataset_dir
|
||||
|
||||
def parse(self, children=None):
|
||||
return cde.LJSpeechNode(self.dataset_dir, self.sampler)
|
||||
|
||||
|
||||
class TextFileDataset(SourceDataset):
|
||||
"""
|
||||
A source dataset that reads and parses datasets stored on disk in text format.
|
||||
|
|
|
@ -421,6 +421,32 @@ def check_celebadataset(method):
|
|||
return new_method
|
||||
|
||||
|
||||
def check_lj_speech_dataset(method):
|
||||
"""A wrapper that wraps a parameter checker around the original Dataset(LJSpeechDataset)."""
|
||||
|
||||
@wraps(method)
|
||||
def new_method(self, *args, **kwargs):
|
||||
_, param_dict = parse_user_args(method, *args, **kwargs)
|
||||
|
||||
nreq_param_int = ['num_samples', 'num_parallel_workers', 'num_shards', 'shard_id']
|
||||
nreq_param_bool = ['shuffle']
|
||||
|
||||
dataset_dir = param_dict.get('dataset_dir')
|
||||
check_dir(dataset_dir)
|
||||
|
||||
validate_dataset_param_value(nreq_param_int, param_dict, int)
|
||||
validate_dataset_param_value(nreq_param_bool, param_dict, bool)
|
||||
|
||||
check_sampler_shuffle_shard_options(param_dict)
|
||||
|
||||
cache = param_dict.get('cache')
|
||||
check_cache_option(cache)
|
||||
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
def check_save(method):
|
||||
"""A wrapper that wraps a parameter checker around the saved operator."""
|
||||
|
||||
|
|
|
@ -29,6 +29,7 @@ SET(DE_UT_SRCS
|
|||
c_api_dataset_fashion_mnist_test.cc
|
||||
c_api_dataset_flickr_test.cc
|
||||
c_api_dataset_iterator_test.cc
|
||||
c_api_dataset_lj_speech_test.cc
|
||||
c_api_dataset_manifest_test.cc
|
||||
c_api_dataset_minddata_test.cc
|
||||
c_api_dataset_ops_test.cc
|
||||
|
|
|
@ -0,0 +1,205 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "common/common.h"
|
||||
|
||||
#include "minddata/dataset/include/dataset/datasets.h"
|
||||
|
||||
using namespace mindspore::dataset;
|
||||
using mindspore::dataset::DataType;
|
||||
using mindspore::dataset::Tensor;
|
||||
using mindspore::dataset::TensorShape;
|
||||
|
||||
class MindDataTestPipeline : public UT::DatasetOpTesting {
|
||||
protected:
|
||||
};
|
||||
|
||||
/// Feature: LJSpeechDataset
|
||||
/// Description: basic test of LJSpeechDataset
|
||||
/// Expectation: the data is processed successfully
|
||||
TEST_F(MindDataTestPipeline, TestLJSpeechDataset) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLJSpeechDataset.";
|
||||
std::string folder_path = datasets_root_path_ + "/testLJSpeechData/";
|
||||
std::shared_ptr<Dataset> ds = LJSpeech(folder_path, std::make_shared<RandomSampler>(false, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
MS_LOG(INFO) << "iter->GetNextRow(&row) OK";
|
||||
|
||||
EXPECT_NE(row.find("waveform"), row.end());
|
||||
EXPECT_NE(row.find("sample_rate"), row.end());
|
||||
EXPECT_NE(row.find("transcription"), row.end());
|
||||
EXPECT_NE(row.find("normalized_transcription"), row.end());
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto waveform = row["waveform"];
|
||||
MS_LOG(INFO) << "Tensor waveform shape: " << waveform.Shape();
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 3);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: LJSpeechDataset
|
||||
/// Description: test LJSpeechDataset in pipeline mode
|
||||
/// Expectation: the data is processed successfully
|
||||
TEST_F(MindDataTestPipeline, TestLJSpeechDatasetWithPipeline) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLJSpeechDatasetWithPipeline.";
|
||||
|
||||
// Create two LJSpeech Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLJSpeechData/";
|
||||
std::shared_ptr<Dataset> ds1 = LJSpeech(folder_path, std::make_shared<RandomSampler>(false, 3));
|
||||
std::shared_ptr<Dataset> ds2 = LJSpeech(folder_path, std::make_shared<RandomSampler>(false, 3));
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create two Repeat operation on ds.
|
||||
int32_t repeat_num = 1;
|
||||
ds1 = ds1->Repeat(repeat_num);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
repeat_num = 1;
|
||||
ds2 = ds2->Repeat(repeat_num);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create two Project operation on ds.
|
||||
std::vector<std::string> column_project = {"waveform", "sample_rate", "transcription", "normalized_transcription"};
|
||||
ds1 = ds1->Project(column_project);
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
ds2 = ds2->Project(column_project);
|
||||
EXPECT_NE(ds2, nullptr);
|
||||
|
||||
// Create a Concat operation on the ds.
|
||||
ds1 = ds1->Concat({ds2});
|
||||
EXPECT_NE(ds1, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
// This will trigger the creation of the Execution Tree and launch it.
|
||||
std::shared_ptr<Iterator> iter = ds1->CreateIterator();
|
||||
EXPECT_NE(iter, nullptr);
|
||||
|
||||
// Iterate the dataset and get each row.
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
EXPECT_NE(row.find("waveform"), row.end());
|
||||
EXPECT_NE(row.find("sample_rate"), row.end());
|
||||
EXPECT_NE(row.find("transcription"), row.end());
|
||||
EXPECT_NE(row.find("normalized_transcription"), row.end());
|
||||
|
||||
uint64_t i = 0;
|
||||
while (row.size() != 0) {
|
||||
i++;
|
||||
auto waveform = row["waveform"];
|
||||
MS_LOG(INFO) << "Tensor waveform shape: " << waveform.Shape();
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
}
|
||||
|
||||
EXPECT_EQ(i, 6);
|
||||
|
||||
// Manually terminate the pipeline.
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
/// Feature: LJSpeechDataset
|
||||
/// Description: test getting size of LJSpeechDataset
|
||||
/// Expectation: the size is correct
|
||||
TEST_F(MindDataTestPipeline, TestLJSpeechGetDatasetSize) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLJSpeechGetDatasetSize.";
|
||||
|
||||
// Create a LJSpeech Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLJSpeechData/";
|
||||
std::shared_ptr<Dataset> ds = LJSpeech(folder_path);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 3);
|
||||
}
|
||||
|
||||
/// Feature: LJSpeechDataset
|
||||
/// Description: test LJSpeechDataset with mix getter
|
||||
/// Expectation: the data is processed successfully
|
||||
TEST_F(MindDataTestPipeline, TestLJSpeechGetters) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLJSpeechMixGetter.";
|
||||
|
||||
// Create a LJSpeech Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLJSpeechData/";
|
||||
std::shared_ptr<Dataset> ds = LJSpeech(folder_path);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 3);
|
||||
std::vector<DataType> types = ToDETypes(ds->GetOutputTypes());
|
||||
std::vector<TensorShape> shapes = ToTensorShapeVec(ds->GetOutputShapes());
|
||||
std::vector<std::string> column_names = {"waveform", "sample_rate", "transcription", "normalized_transcription"};
|
||||
EXPECT_EQ(types.size(), 4);
|
||||
EXPECT_EQ(types[0].ToString(), "float32");
|
||||
EXPECT_EQ(types[1].ToString(), "int32");
|
||||
EXPECT_EQ(types[2].ToString(), "string");
|
||||
EXPECT_EQ(types[3].ToString(), "string");
|
||||
EXPECT_EQ(shapes.size(), 4);
|
||||
EXPECT_EQ(shapes[1].ToString(), "<>");
|
||||
EXPECT_EQ(shapes[2].ToString(), "<>");
|
||||
EXPECT_EQ(shapes[3].ToString(), "<>");
|
||||
EXPECT_EQ(ds->GetBatchSize(), 1);
|
||||
EXPECT_EQ(ds->GetRepeatCount(), 1);
|
||||
|
||||
EXPECT_EQ(ds->GetDatasetSize(), 3);
|
||||
EXPECT_EQ(ToDETypes(ds->GetOutputTypes()), types);
|
||||
EXPECT_EQ(ToTensorShapeVec(ds->GetOutputShapes()), shapes);
|
||||
|
||||
EXPECT_EQ(ds->GetColumnNames(), column_names);
|
||||
}
|
||||
|
||||
/// Feature: LJSpeechDataset
|
||||
/// Description: test LJSpeechDataset with the fail of reading dataset
|
||||
/// Expectation: throw correct error and message
|
||||
TEST_F(MindDataTestPipeline, TestLJSpeechDatasetFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLJSpeechDatasetFail.";
|
||||
|
||||
// Create a LJSpeech Dataset.
|
||||
std::shared_ptr<Dataset> ds = LJSpeech("", std::make_shared<RandomSampler>(false, 3));
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: invalid LJSpeech input.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
/// Feature: LJSpeechDataset
|
||||
/// Description: test LJSpeechDataset with the null sampler
|
||||
/// Expectation: throw correct error and message
|
||||
TEST_F(MindDataTestPipeline, TestLJSpeechDatasetWithNullSamplerFail) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestLJSpeechDatasetWithNullSamplerFail.";
|
||||
|
||||
// Create a LJSpeech Dataset.
|
||||
std::string folder_path = datasets_root_path_ + "/testLJSpeechData/";
|
||||
std::shared_ptr<Dataset> ds = LJSpeech(folder_path, nullptr);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Create an iterator over the result of the above dataset.
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
// Expect failure: invalid LJSpeech input, sampler cannot be nullptr.
|
||||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
|
@ -0,0 +1,3 @@
|
|||
my_wave_1|this is my_wave_1|this is my_wave_1
|
||||
my_wave_2|this is my_wave_2|this is my_wave_2
|
||||
my_wave_3|this is my_wave_3|this is my_wave_3
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,3 @@
|
|||
my_wave_1|this is my_wave_1|this is my_wave_1
|
||||
my_wave_2|this is my_wave_2|this is my_wave_2
|
||||
my_wave_3|this is my_wave_3|this is my_wave_3
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,161 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Test LJSpeech dataset operators
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.audio.transforms as audio
|
||||
from mindspore import log as logger
|
||||
|
||||
DATA_DIR = "../data/dataset/testLJSpeechData/"
|
||||
|
||||
|
||||
def test_lj_speech_basic():
|
||||
"""
|
||||
Feature: LJSpeechDataset
|
||||
Description: basic test of LJSpeechDataset
|
||||
Expectation: the data is processed successfully
|
||||
"""
|
||||
logger.info("Test LJSpeechDataset Op")
|
||||
|
||||
# case 1: test loading whole dataset
|
||||
data1 = ds.LJSpeechDataset(DATA_DIR)
|
||||
num_iter1 = 0
|
||||
for _ in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
num_iter1 += 1
|
||||
assert num_iter1 == 3
|
||||
|
||||
# case 2: test num_samples
|
||||
data2 = ds.LJSpeechDataset(DATA_DIR, num_samples=3)
|
||||
num_iter2 = 0
|
||||
for _ in data2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
num_iter2 += 1
|
||||
assert num_iter2 == 3
|
||||
|
||||
# case 3: test repeat
|
||||
data3 = ds.LJSpeechDataset(DATA_DIR, num_samples=3)
|
||||
data3 = data3.repeat(5)
|
||||
num_iter3 = 0
|
||||
for _ in data3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
num_iter3 += 1
|
||||
assert num_iter3 == 15
|
||||
|
||||
|
||||
def test_lj_speech_sequential_sampler():
|
||||
"""
|
||||
Feature: LJSpeechDataset
|
||||
Description: test LJSpeechDataset with SequentialSampler
|
||||
Expectation: the data is processed successfully
|
||||
"""
|
||||
logger.info("Test LJSpeechDataset Op with SequentialSampler")
|
||||
num_samples = 3
|
||||
sampler = ds.SequentialSampler(num_samples=num_samples)
|
||||
data1 = ds.LJSpeechDataset(DATA_DIR, sampler=sampler)
|
||||
data2 = ds.LJSpeechDataset(DATA_DIR, shuffle=False, num_samples=num_samples)
|
||||
sample_rate_list1, sample_rate_list2 = [], []
|
||||
num_iter = 0
|
||||
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
|
||||
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
||||
sample_rate_list1.append(item1["sample_rate"])
|
||||
sample_rate_list2.append(item2["sample_rate"])
|
||||
num_iter += 1
|
||||
np.testing.assert_array_equal(sample_rate_list1, sample_rate_list2)
|
||||
assert num_iter == num_samples
|
||||
|
||||
|
||||
def test_lj_speech_exception():
|
||||
"""
|
||||
Feature: LJSpeechDataset
|
||||
Description: test error cases for LJSpeechDataset
|
||||
Expectation: throw correct error and message
|
||||
"""
|
||||
logger.info("Test error cases for LJSpeechDataset")
|
||||
error_msg_1 = "sampler and shuffle cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_1):
|
||||
ds.LJSpeechDataset(DATA_DIR, shuffle=False, sampler=ds.PKSampler(3))
|
||||
|
||||
error_msg_2 = "sampler and sharding cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_2):
|
||||
ds.LJSpeechDataset(DATA_DIR, sampler=ds.PKSampler(3), num_shards=2, shard_id=0)
|
||||
|
||||
error_msg_3 = "num_shards is specified and currently requires shard_id as well"
|
||||
with pytest.raises(RuntimeError, match=error_msg_3):
|
||||
ds.LJSpeechDataset(DATA_DIR, num_shards=10)
|
||||
|
||||
error_msg_4 = "shard_id is specified but num_shards is not"
|
||||
with pytest.raises(RuntimeError, match=error_msg_4):
|
||||
ds.LJSpeechDataset(DATA_DIR, shard_id=0)
|
||||
|
||||
error_msg_5 = "Input shard_id is not within the required interval"
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.LJSpeechDataset(DATA_DIR, num_shards=5, shard_id=-1)
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.LJSpeechDataset(DATA_DIR, num_shards=5, shard_id=5)
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.LJSpeechDataset(DATA_DIR, num_shards=2, shard_id=5)
|
||||
|
||||
error_msg_6 = "num_parallel_workers exceeds"
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.LJSpeechDataset(DATA_DIR, shuffle=False, num_parallel_workers=0)
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.LJSpeechDataset(DATA_DIR, shuffle=False, num_parallel_workers=256)
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.LJSpeechDataset(DATA_DIR, shuffle=False, num_parallel_workers=-2)
|
||||
|
||||
error_msg_7 = "Argument shard_id"
|
||||
with pytest.raises(TypeError, match=error_msg_7):
|
||||
ds.LJSpeechDataset(DATA_DIR, num_shards=2, shard_id="0")
|
||||
|
||||
def exception_func(item):
|
||||
raise Exception("Error occur!")
|
||||
|
||||
error_msg_8 = "The corresponding data files"
|
||||
with pytest.raises(RuntimeError, match=error_msg_8):
|
||||
data = ds.LJSpeechDataset(DATA_DIR)
|
||||
data = data.map(operations=exception_func, input_columns=["waveform"], num_parallel_workers=1)
|
||||
for _ in data.__iter__():
|
||||
pass
|
||||
with pytest.raises(RuntimeError, match=error_msg_8):
|
||||
data = ds.LJSpeechDataset(DATA_DIR)
|
||||
data = data.map(operations=exception_func, input_columns=["sample_rate"], num_parallel_workers=1)
|
||||
for _ in data.__iter__():
|
||||
pass
|
||||
|
||||
|
||||
def test_lj_speech_pipeline():
|
||||
"""
|
||||
Feature: LJSpeechDataset
|
||||
Description: Read a sample
|
||||
Expectation: The amount of each function are equal
|
||||
"""
|
||||
# Original waveform
|
||||
dataset = ds.LJSpeechDataset(DATA_DIR)
|
||||
band_biquad_op = audio.BandBiquad(8000, 200.0)
|
||||
# Filtered waveform by bandbiquad
|
||||
dataset = dataset.map(input_columns=["waveform"], operations=band_biquad_op, num_parallel_workers=2)
|
||||
i = 0
|
||||
for _ in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
i += 1
|
||||
assert i == 3
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_lj_speech_basic()
|
||||
test_lj_speech_sequential_sampler()
|
||||
test_lj_speech_exception()
|
||||
test_lj_speech_pipeline()
|
Loading…
Reference in New Issue