!8041 rewrite the instanceNorm operator

Merge pull request !8041 from XianglongZeng/myms
This commit is contained in:
mindspore-ci-bot 2020-10-31 09:07:42 +08:00 committed by Gitee
commit 58adf298ea
9 changed files with 106 additions and 82 deletions

View File

@ -13,30 +13,37 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp32/instance_norm.h"
#include <math.h>
#include "nnacl/instance_norm_parameter.h"
#include "nnacl/errorcode.h"
#include "nnacl/op_base.h"
void InstanceNormFp32(const void *input, const void *mean, const void *variance, InstanceNormParameter *param,
int task_id, void *output) {
int units_per_thread = UP_DIV(param->unit_, param->op_parameter_.thread_num_);
int completed_units = task_id * units_per_thread;
if (completed_units >= param->unit_) {
return;
int InstanceNorm(const int outer_size, const int inner_size, const float *src_data, const float *scale_data,
const float *bias_data, InstanceNormParameter *param, float *dst_data, const int task_id,
const int thread_num) {
if (src_data == NULL || dst_data == NULL || scale_data == NULL || bias_data == NULL) {
return NNACL_NULL_PTR;
}
int cur_unit = MSMIN(units_per_thread, param->unit_ - completed_units);
int cur_offset = completed_units * param->channel_;
for (int n = 0; n < param->batch_; n++) {
for (int hw = 0; hw < cur_unit; hw++) {
for (int c = 0; c < param->channel_; c++) {
float variance_sqrt = sqrt(((const float *)variance)[n * param->channel_ + c] + param->epsilon_);
((float *)output)[cur_offset + c] =
(((const float *)input)[cur_offset + c] - ((const float *)mean)[n * param->channel_ + c]) / variance_sqrt;
}
cur_offset += param->channel_;
int i, j;
for (j = task_id; j < outer_size; j += thread_num) {
int offset = (j / param->channel_) * inner_size * param->channel_;
const float *src = src_data + offset;
float *dst = dst_data + offset;
float mean = 0.0f;
float square_mean = 0.0f;
for (i = 0; i < inner_size; i++) {
int idx = j % param->channel_ + i * param->channel_;
mean += src[idx];
square_mean += src[idx] * src[idx];
}
mean /= (float)inner_size;
square_mean /= (float)inner_size;
float deno = 1 / sqrtf(square_mean - mean * mean + param->epsilon_);
for (i = 0; i < inner_size; ++i) {
int idx = j % param->channel_ + i * param->channel_;
int scale_idx = (j / param->channel_) * param->channel_ + j % param->channel_;
dst[idx] = ((src[idx] - mean) * deno) * scale_data[scale_idx] + bias_data[scale_idx];
}
cur_offset += (param->unit_ - cur_unit) * param->channel_;
}
return NNACL_OK;
}

View File

@ -13,20 +13,19 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_
#define MINDSPORE_LITE_NNACL_FP32_INSTANCE_NORM_H_
#include "nnacl/op_base.h"
#include "nnacl/instance_norm_parameter.h"
#ifdef __cplusplus
extern "C" {
#endif
void InstanceNormFp32(const void *input, const void *mean, const void *variance, InstanceNormParameter *param,
int task_id, void *output);
void FusedInstanceNormFp32(const void *input, const void *scale, const void *offset, const void *mean,
const void *variance, InstanceNormParameter *param, int task_id, void *output);
int InstanceNorm(const int outer_size, const int inner_size, const float *src_data, const float *scale_data,
const float *bias_data, InstanceNormParameter *param, float *dst_data, const int task_id,
const int thread_num);
#ifdef __cplusplus
}
#endif

View File

@ -23,10 +23,7 @@ typedef struct InstanceNormParameter {
OpParameter op_parameter_;
float epsilon_;
float momentum_;
int unit_;
int batch_;
int channel_;
bool fused_;
} InstanceNormParameter;
#endif // MINDSPORE_LITE_NNACL_INSTANCE_NORM_PARAMETER_H_

View File

@ -33,7 +33,6 @@ OpParameter *PopulateInstanceNormParameter(const mindspore::lite::PrimitiveC *pr
memset(instance_norm_param, 0, sizeof(InstanceNormParameter));
instance_norm_param->op_parameter_.type_ = primitive->Type();
instance_norm_param->epsilon_ = param->GetEpsilon();
instance_norm_param->fused_ = false;
return reinterpret_cast<OpParameter *>(instance_norm_param);
}

View File

@ -13,11 +13,13 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/instance_norm.h"
#include "nnacl/fp32/instance_norm.h"
#include <vector>
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
@ -32,47 +34,60 @@ int InstanceNormCPUKernel::Init() {
}
int InstanceNormCPUKernel::ReSize() {
auto input_shapes = in_tensors_[0]->shape();
auto input_shapes = in_tensors_.front()->shape();
auto n_dim = input_shapes.size();
auto param = reinterpret_cast<InstanceNormParameter *>(op_parameter_);
param->batch_ = input_shapes[0];
param->channel_ = input_shapes[n_dim - 1];
param->unit_ = 1;
for (size_t i = 1; i < n_dim - 1; i++) {
param->unit_ *= input_shapes[i];
outer_size_ = input_shapes[0] * input_shapes[n_dim - 1];
inner_size_ = 1;
for (size_t i = 0; i < n_dim - 1; ++i) {
inner_size_ *= input_shapes[i];
}
param_->channel_ = input_shapes[n_dim - 1];
return RET_OK;
}
int InstanceNormCPUKernel::DoInstanceNorm(int task_id) {
int ret = InstanceNorm(outer_size_, inner_size_, src_data_, scale_data_, bias_data_, param_, dst_data_, task_id,
op_parameter_->thread_num_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "DoInstanceNorm error error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
int InstanceNormRun(void *cdata, int task_id) {
auto InstanceNormData = reinterpret_cast<InstanceNormCPUKernel *>(cdata);
auto ret = InstanceNormData->DoInstanceNorm(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "InstanceNormRun error task_id[" << task_id << "] error_code[" << ret << "]";
return RET_ERROR;
}
return RET_OK;
}
int InstanceNormCPUKernel::Run() {
src_data_ = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData());
scale_data_ = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData());
bias_data_ = reinterpret_cast<float *>(in_tensors_.at(2)->MutableData());
dst_data_ = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
auto ret = ParallelLaunch(this->context_->thread_pool_, InstanceNormRun, this, op_parameter_->thread_num_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "InstanceNormRun error error_code[" << ret << "]";
MS_LOG(ERROR) << "FillRun error error_code[" << ret << "]";
return ret;
}
return ret;
return RET_OK;
}
int InstanceNormCPUKernel::DoExecute(int task_id) {
auto param = reinterpret_cast<InstanceNormParameter *>(op_parameter_);
InstanceNormFp32(in_tensors_.at(0)->MutableData(), in_tensors_.at(1)->MutableData(), in_tensors_.at(2)->MutableData(),
param, task_id, out_tensors_.at(0)->MutableData());
return mindspore::lite::RET_OK;
}
int InstanceNormRun(void *cdata, int task_id) {
auto kernel = reinterpret_cast<InstanceNormCPUKernel *>(cdata);
auto ret = kernel->DoExecute(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "InstanceNormRun error task_id[" << task_id << "] error_code[" << ret << "]";
kernel::LiteKernel *CpuInstanceNormFp32KernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs,
OpParameter *opParameter, const lite::InnerContext *ctx,
const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
if (opParameter == nullptr) {
MS_LOG(ERROR) << "Create kernel failed, opParameter is nullptr, type: PrimitiveType_InstanceNorm. ";
return nullptr;
}
return ret;
}
kernel::LiteKernel *CpuInstanceNormKernelCreator(const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
const lite::InnerContext *ctx, const kernel::KernelKey &desc,
const mindspore::lite::PrimitiveC *primitive) {
MS_ASSERT(opParameter != nullptr);
MS_ASSERT(desc.type == schema::PrimitiveType_InstanceNorm);
auto *kernel = new (std::nothrow) InstanceNormCPUKernel(opParameter, inputs, outputs, ctx, primitive);
if (kernel == nullptr) {
MS_LOG(ERROR) << "new InstanceNormCPUKernel fail!";
@ -89,5 +104,5 @@ kernel::LiteKernel *CpuInstanceNormKernelCreator(const std::vector<lite::Tensor
return kernel;
}
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_InstanceNorm, CpuInstanceNormKernelCreator)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_InstanceNorm, CpuInstanceNormFp32KernelCreator)
} // namespace mindspore::kernel

View File

@ -13,15 +13,13 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_
#include <vector>
#include "src/lite_kernel.h"
#include "include/context.h"
#include "nnacl/instance_norm_parameter.h"
#include "src/runtime/runtime_api.h"
#include "nnacl/fp32/instance_norm.h"
using mindspore::lite::InnerContext;
@ -29,18 +27,27 @@ namespace mindspore::kernel {
class InstanceNormCPUKernel : public LiteKernel {
public:
InstanceNormCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~InstanceNormCPUKernel() override = default;
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {
param_ = reinterpret_cast<InstanceNormParameter *>(parameter);
}
~InstanceNormCPUKernel() override{};
int Init() override;
int ReSize() override;
int Run() override;
virtual int DoExecute(int task_id);
};
int DoInstanceNorm(int thread_id);
int InstanceNormRun(void *cdata, int task_id);
private:
InstanceNormParameter *param_ = nullptr;
int outer_size_;
int inner_size_;
float *src_data_ = nullptr;
float *dst_data_ = nullptr;
float *scale_data_ = nullptr;
float *bias_data_ = nullptr;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_INSTANCE_NORM_H_

View File

@ -39,7 +39,7 @@ class LayerNormCPUKernel : public LiteKernel {
int DoLayerNorm(int thread_id);
private:
LayerNormParameter *param_;
LayerNormParameter *param_ = nullptr;
int outer_size_;
int inner_size_;
float *src_data_ = nullptr;

View File

@ -45,8 +45,8 @@ TEST_F(TestInstanceNormFp32, INTest1) {
std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor};
std::vector<float> output(12);
std::vector<float> corr_out = {-6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535,
-3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324};
std::vector<float> corr_out = {5.0145645, 9.248516, 15.439679, 33.51017, 0.0012711287, 31.0666883,
17.70254, -2.5507483, -8.204435, 2.3031063, -3.8630369, 6.4138837};
lite::Tensor output0_tensor(kNumberTypeFloat32, {1, 2, 2, 3});
output0_tensor.set_data(output.data());
@ -80,8 +80,8 @@ TEST_F(TestInstanceNormFp32, INTest1) {
TEST_F(TestInstanceNormFp32, INTest2) {
std::vector<float> in_data = {-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399,
-1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344,
-11.18675, 11.433986, 11.386012, 11.245945, -2.7614849, 14.692399,
-1.1983503, -6.6790967, 6.383416, -13.3213005, -8.693595, 9.476344};
-12.18675, 12.433986, 12.386012, 12.245945, -3.7614849, 15.692399,
-2.1983503, -7.6790967, 7.383416, -14.3213005, -9.693595, 10.476344};
std::vector<float> in_data1 = {12.352293, 5.122387, 14.249514, 12.352293, 5.122387, 14.249514};
std::vector<float> in_data2 = {14.632595, 0.70900035, 11.179003, 14.632595, 0.70900035, 11.179003};
@ -90,18 +90,18 @@ TEST_F(TestInstanceNormFp32, INTest2) {
op_param.epsilon_ = 0.001f;
lite::Tensor input0_tensor(kNumberTypeFloat32, {2, 2, 2, 3});
lite::Tensor input1_tensor(kNumberTypeFloat32, {6});
lite::Tensor input2_tensor(kNumberTypeFloat32, {6});
lite::Tensor input1_tensor(kNumberTypeFloat32, {2, 3});
lite::Tensor input2_tensor(kNumberTypeFloat32, {2, 3});
input0_tensor.set_data(in_data.data());
input1_tensor.set_data(in_data1.data());
input2_tensor.set_data(in_data2.data());
std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor};
std::vector<float> output(24);
std::vector<float> corr_out = {-6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535,
-3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324,
-6.1533737, 7.4904885, -0.8563998, -0.289212, -9.356432, 0.13245535,
-3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324};
std::vector<float> corr_out = {5.0145645, 9.248516, 15.439679, 33.51017, 0.0012711287, 31.0666883,
17.70254, -2.5507483, -8.204435, 2.3031063, -3.8630369, 6.4138837,
5.133601, 9.310399, 15.439679, 33.886883, -0.22505027, 31.066883,
16.888313, -2.5316327, -8.204435, 2.6215858, -3.717714, 6.4138837};
lite::Tensor output0_tensor(kNumberTypeFloat32, {2, 2, 2, 3});
output0_tensor.set_data(output.data());

View File

@ -21,7 +21,7 @@
namespace mindspore {
namespace lite {
constexpr int32_t kSingleGrounp = 1;
constexpr int32_t kSingleGroup = 1;
bool OnnxConvParser::ParseGroupConvolution(const std::unique_ptr<schema::Conv2DT> &attr, schema::CNodeT *op) {
MS_LOG(DEBUG) << "onnx DepthwiseConvParser";
if (attr == nullptr || attr->group != attr->channelIn) {
@ -172,7 +172,7 @@ STATUS OnnxConvParser::Parse(const onnx::GraphProto &onnx_graph, const onnx::Nod
attr->activationType = schema::ActivationType_NO_ACTIVATION;
}
if (attr->group > kSingleGrounp && attr->group == attr->channelIn) {
if (attr->group > kSingleGroup && attr->group == attr->channelIn) {
if (!ParseGroupConvolution(attr, op)) {
MS_LOG(ERROR) << "Convert Convolution to Depthwise failed";
return RET_ERROR;