forked from mindspore-Ecosystem/mindspore
roi end mode
This commit is contained in:
parent
4b4ca1a188
commit
575280bb61
|
@ -91,16 +91,21 @@ __device__ void bin_box(int thread_idx, const T *roi_boxes, int roi_cols, const
|
|||
}
|
||||
|
||||
// Scale and shift ROI
|
||||
T roi_offset = roi_end_mode == 0 ? static_cast<T>(0.5) : static_cast<T>(.0);
|
||||
*roi_start_w = roi_box[0] * spatial_scale - roi_offset;
|
||||
*roi_start_h = roi_box[1] * spatial_scale - roi_offset;
|
||||
T roi_end_w = roi_box[2] * spatial_scale - roi_offset;
|
||||
T roi_end_h = roi_box[3] * spatial_scale - roi_offset;
|
||||
*roi_start_w = roi_box[0] * spatial_scale;
|
||||
*roi_start_h = roi_box[1] * spatial_scale;
|
||||
T roi_end_w = (roi_box[2] + static_cast<T>(roi_end_mode)) * spatial_scale;
|
||||
T roi_end_h = (roi_box[3] + static_cast<T>(roi_end_mode)) * spatial_scale;
|
||||
|
||||
// New ROI height/width
|
||||
T roi_width = roi_end_w - (*roi_start_w);
|
||||
T roi_height = roi_end_h - (*roi_start_h);
|
||||
|
||||
if (roi_end_mode == 0) { // backward compatibility
|
||||
// Force malformed ROIs to be 1x1
|
||||
roi_width = roi_width > static_cast<T>(1.0) ? roi_width : static_cast<T>(1.0);
|
||||
roi_height = roi_height > static_cast<T>(1.0) ? roi_height : static_cast<T>(1.0);
|
||||
}
|
||||
|
||||
// ratio of roi / pooled
|
||||
*bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
|
||||
*bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
|
||||
|
|
|
@ -1,78 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class NetROIAlignGrad(nn.Cell):
|
||||
def __init__(self, xdiff_shape, pooled_height, pooled_width, spatial_scale, sample_num):
|
||||
super(NetROIAlignGrad, self).__init__()
|
||||
self.roiAlignGrad = G.ROIAlignGrad(
|
||||
xdiff_shape,
|
||||
pooled_height,
|
||||
pooled_width,
|
||||
spatial_scale,
|
||||
sample_num)
|
||||
|
||||
def construct(self, dy, rois):
|
||||
return self.roiAlignGrad(dy, rois)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_roi_align_grad_half():
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float16))
|
||||
|
||||
dy = Tensor(np.array([[[
|
||||
[.1, .2, .3],
|
||||
[.1, .2, .3],
|
||||
[.1, .2, .3]
|
||||
]]], np.float16))
|
||||
|
||||
xdiff_shape = (1, 1, 6, 6)
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
roi_align_grad = NetROIAlignGrad(
|
||||
xdiff_shape,
|
||||
pooled_height,
|
||||
pooled_width,
|
||||
spatial_scale,
|
||||
sample_num)
|
||||
output = roi_align_grad(dy, rois)
|
||||
print(output)
|
||||
# the out if aligned is True
|
||||
# expect = ([[[[0.0563, 0.0563, 0.0750, 0.0938, 0.1125, 0.0563],
|
||||
# [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375],
|
||||
# [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375],
|
||||
# [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375],
|
||||
# [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375],
|
||||
# [0.0188, 0.0188, 0.0250, 0.0312, 0.0375, 0.0188]]]])
|
||||
expect = ([[[[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075]]]])
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4)
|
|
@ -42,37 +42,34 @@ class NetROIAlignGrad(nn.Cell):
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_roi_align_grad():
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float32))
|
||||
def roi_align_grad_case(data_type):
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 21.0, 21.0]], data_type))
|
||||
|
||||
dy = Tensor(np.array([[[
|
||||
[.1, .2, .3],
|
||||
[.1, .2, .3],
|
||||
[.1, .2, .3]
|
||||
]]], np.float32))
|
||||
dy = Tensor(np.array([[[
|
||||
[.1, .2, .3],
|
||||
[.1, .2, .3],
|
||||
[.1, .2, .3]
|
||||
]]], data_type))
|
||||
|
||||
xdiff_shape = (1, 1, 6, 6)
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2
|
||||
xdiff_shape = (1, 1, 6, 6)
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
roi_align_grad = NetROIAlignGrad(
|
||||
xdiff_shape,
|
||||
pooled_height,
|
||||
pooled_width,
|
||||
spatial_scale,
|
||||
sample_num)
|
||||
output = roi_align_grad(dy, rois)
|
||||
print(output)
|
||||
# the out if aligned is True
|
||||
# expect = ([[[[0.0563, 0.0563, 0.0750, 0.0938, 0.1125, 0.0563],
|
||||
# [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375],
|
||||
# [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375],
|
||||
# [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375],
|
||||
# [0.0375, 0.0375, 0.0500, 0.0625, 0.0750, 0.0375],
|
||||
# [0.0188, 0.0188, 0.0250, 0.0312, 0.0375, 0.0188]]]])
|
||||
expect = ([[[[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075]]]])
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4)
|
||||
roi_align_grad = NetROIAlignGrad(
|
||||
xdiff_shape,
|
||||
pooled_height,
|
||||
pooled_width,
|
||||
spatial_scale,
|
||||
sample_num)
|
||||
output = roi_align_grad(dy, rois)
|
||||
print(output)
|
||||
expect = ([[[[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075],
|
||||
[0.025, 0.025, 0.05, 0.05, 0.075, 0.075]]]])
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4)
|
||||
|
||||
roi_align_grad_case(np.float32)
|
||||
roi_align_grad_case(np.float16)
|
||||
|
|
|
@ -1,49 +0,0 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_roi_align_half():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
x = Tensor(np.array([[
|
||||
[[1, 2, 3, 4, 5, 6],
|
||||
[7, 8, 9, 10, 11, 12],
|
||||
[13, 14, 15, 16, 17, 18],
|
||||
[19, 20, 21, 22, 23, 24],
|
||||
[25, 26, 27, 28, 29, 30],
|
||||
[31, 32, 33, 34, 35, 36]]
|
||||
]], np.float16))
|
||||
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float16))
|
||||
|
||||
# test case 1
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 4, 4, 0.2, 3
|
||||
roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0)
|
||||
output = roi_align(x, rois)
|
||||
print(output)
|
||||
expect = [[[[1.2333, 2.1000, 3.3000, 4.5000],
|
||||
[6.4333, 7.3000, 8.5000, 9.7000],
|
||||
[13.6333, 14.5000, 15.7000, 16.9000],
|
||||
[20.8333, 21.7000, 22.9000, 24.1000]]]]
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=1)
|
|
@ -25,61 +25,51 @@ from mindspore.ops import operations as P
|
|||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_roi_align():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
x = Tensor(np.array([[
|
||||
[[1, 2, 3, 4, 5, 6],
|
||||
[7, 8, 9, 10, 11, 12],
|
||||
[13, 14, 15, 16, 17, 18],
|
||||
[19, 20, 21, 22, 23, 24],
|
||||
[25, 26, 27, 28, 29, 30],
|
||||
[31, 32, 33, 34, 35, 36]]
|
||||
]], np.float32))
|
||||
def roi_align_case(data_type):
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
x = Tensor(np.array([[
|
||||
[[1, 2, 3, 4, 5, 6],
|
||||
[7, 8, 9, 10, 11, 12],
|
||||
[13, 14, 15, 16, 17, 18],
|
||||
[19, 20, 21, 22, 23, 24],
|
||||
[25, 26, 27, 28, 29, 30],
|
||||
[31, 32, 33, 34, 35, 36]]
|
||||
]], data_type))
|
||||
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float32))
|
||||
# test case 1
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 21.0, 21.0]], data_type))
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2
|
||||
roi_align = P.ROIAlign(pooled_height, pooled_width,
|
||||
spatial_scale, sample_num, 1)
|
||||
output = roi_align(x, rois)
|
||||
print(output)
|
||||
expect = [[[[4.5, 6.5, 8.5],
|
||||
[16.5, 18.5, 20.5],
|
||||
[28.5, 30.5, 32.5]]]]
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
# test case 1
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2
|
||||
roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0)
|
||||
output = roi_align(x, rois)
|
||||
print(output)
|
||||
expect = [[[[2.75, 4.5, 6.5],
|
||||
[13.25, 15., 17.],
|
||||
[25.25, 27., 29.]]]]
|
||||
assert (output.asnumpy() == expect).all()
|
||||
# test case 2
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], data_type))
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.25, 2
|
||||
roi_align = P.ROIAlign(pooled_height, pooled_width,
|
||||
spatial_scale, sample_num, 0)
|
||||
output = roi_align(x, rois)
|
||||
print(output)
|
||||
expect = [[[[4.5, 6.5, 8.5],
|
||||
[16.5, 18.5, 20.5],
|
||||
[28.5, 30.5, 32.5]]]]
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
# test case 2
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 4, 4, 0.2, 3
|
||||
roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0)
|
||||
output = roi_align(x, rois)
|
||||
print(output)
|
||||
expect = [[[[1.2333, 2.1000, 3.3000, 4.5000],
|
||||
[6.4333, 7.3000, 8.5000, 9.7000],
|
||||
[13.6333, 14.5000, 15.7000, 16.9000],
|
||||
[20.8333, 21.7000, 22.9000, 24.1000]]]]
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4)
|
||||
# test case 3
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 2, 2, 1.0, -1
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], data_type))
|
||||
roi_align = P.ROIAlign(pooled_height, pooled_width,
|
||||
spatial_scale, sample_num, 0)
|
||||
output = roi_align(x, rois)
|
||||
print(output)
|
||||
expect = [[[[6.295, 0.],
|
||||
[0., 0.]]]]
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=2)
|
||||
|
||||
# test case 3
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 3, 3, 0.3, 3
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0],
|
||||
[0, 1.0, 0.0, 19.0, 18.0]],
|
||||
np.float32))
|
||||
roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0)
|
||||
output = roi_align(x, rois)
|
||||
print(output)
|
||||
expect = [[[[3.3333, 5.5000, 7.6667],
|
||||
[16.3333, 18.5000, 20.6667],
|
||||
[29.3333, 31.5000, 33.6667]]],
|
||||
[[[4.5000, 6.3000, 8.1000],
|
||||
[14.9000, 16.7000, 18.5000],
|
||||
[25.7000, 27.5000, 29.3000]]]]
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4)
|
||||
|
||||
# test case 4
|
||||
pooled_height, pooled_width, spatial_scale, sample_num = 2, 2, 1.0, -1
|
||||
rois = Tensor(np.array([[0, -2.0, -2.0, 22.0, 22.0]], np.float32))
|
||||
roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num, 0)
|
||||
output = roi_align(x, rois)
|
||||
print(output)
|
||||
expect = [[[[8.2222, 0.],
|
||||
[0., 0.]]]]
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4)
|
||||
roi_align_case(np.float32)
|
||||
roi_align_case(np.float16)
|
||||
|
|
Loading…
Reference in New Issue