forked from mindspore-Ecosystem/mindspore
CPU operation dev:StandardNormal
This commit is contained in:
parent
ecc9f00c3c
commit
5735bb1289
|
@ -0,0 +1,110 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <random>
|
||||
#include <thread>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
#include "backend/kernel_compiler/cpu/random_cpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void StandardNormal(float *output, std::normal_distribution<float> distribution,
|
||||
std::default_random_engine random_generator, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
output[i] = distribution(random_generator);
|
||||
}
|
||||
}
|
||||
void LaunchStandardNormal(int seed, int seed2, const std::vector<AddressPtr> &outputs) {
|
||||
unsigned int RNG_seed;
|
||||
std::random_device rd;
|
||||
if (seed2 != 0) {
|
||||
RNG_seed = IntToUint(seed2);
|
||||
} else if (seed != 0) {
|
||||
RNG_seed = IntToUint(seed);
|
||||
} else {
|
||||
RNG_seed = rd();
|
||||
}
|
||||
|
||||
auto output = reinterpret_cast<float *>(outputs[0]->addr);
|
||||
// multithreading
|
||||
size_t lens = outputs[0]->size / sizeof(float);
|
||||
auto max_thread_num = std::thread::hardware_concurrency();
|
||||
size_t thread_num = lens < 128 * max_thread_num ? std::ceil(lens / 128.0) : max_thread_num;
|
||||
if (thread_num < 1) {
|
||||
MS_LOG(ERROR) << "Invalid value: thread_num " << thread_num;
|
||||
return;
|
||||
}
|
||||
std::vector<std::thread> threads;
|
||||
threads.reserve(thread_num);
|
||||
size_t start = 0;
|
||||
size_t once_compute_size = (lens + thread_num - 1) / thread_num;
|
||||
if (once_compute_size < 1) {
|
||||
MS_LOG(ERROR) << "Invalid value: once_compute_size " << once_compute_size;
|
||||
return;
|
||||
}
|
||||
std::normal_distribution<float> distribution;
|
||||
while (start < lens) {
|
||||
// avoid different threads using the same seed to generate the same random number
|
||||
std::default_random_engine random_generator(++RNG_seed);
|
||||
size_t end = (start + once_compute_size) > lens ? lens : (start + once_compute_size);
|
||||
threads.emplace_back(std::thread(StandardNormal, output, distribution, random_generator, start, end));
|
||||
start += once_compute_size;
|
||||
}
|
||||
for (size_t i = 0; i < threads.size(); ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
|
||||
void RandomCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
auto iter = kRandomOpTypeMap.find(kernel_name);
|
||||
if (iter == kRandomOpTypeMap.end()) {
|
||||
MS_LOG(EXCEPTION) << "Random operation " << kernel_name << " is not supported.";
|
||||
} else {
|
||||
random_op_type_ = iter->second;
|
||||
}
|
||||
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if ((random_op_type_ == RANDOM_OP_NORMAL) && input_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but random op needs 1 input.";
|
||||
}
|
||||
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but random op needs 1 output.";
|
||||
}
|
||||
|
||||
seed_ = LongToInt(GetValue<int64_t>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed")));
|
||||
seed2_ = LongToInt(GetValue<int64_t>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed2")));
|
||||
}
|
||||
|
||||
bool RandomCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
switch (random_op_type_) {
|
||||
case RANDOM_OP_NORMAL: {
|
||||
LaunchStandardNormal(seed_, seed2_, outputs);
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
MS_LOG(EXCEPTION) << "Random operation " << random_op_type_ << " is not supported.";
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,50 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RANDOM_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RANDOM_CPU_KERNEL_H_
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
enum RandomOptype { RANDOM_OP_NORMAL = 0, RANDOM_OP_UNIFORM_INT, RANDOM_OP_UNIFORM_REAL, RANDOM_OP_INVALID_TYPE = 255 };
|
||||
|
||||
const std::map<std::string, RandomOptype> kRandomOpTypeMap = {
|
||||
{"StandardNormal", RANDOM_OP_NORMAL}, {"UniformInt", RANDOM_OP_UNIFORM_INT}, {"UniformReal", RANDOM_OP_UNIFORM_REAL}};
|
||||
|
||||
class RandomCPUKernel : public CPUKernel {
|
||||
public:
|
||||
RandomCPUKernel() = default;
|
||||
~RandomCPUKernel() override = default;
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
RandomOptype random_op_type_{RANDOM_OP_INVALID_TYPE};
|
||||
int seed_{0};
|
||||
int seed2_{0};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(StandardNormal, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
RandomCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RANDOM_CPU_KERNEL_H_
|
|
@ -98,6 +98,13 @@ inline uint64_t LongToUlong(int64_t u) {
|
|||
return static_cast<uint64_t>(u);
|
||||
}
|
||||
|
||||
inline int32_t LongToInt(int64_t u) {
|
||||
if (u > static_cast<int64_t>((std::numeric_limits<int32_t>::max)())) {
|
||||
MS_LOG(EXCEPTION) << "The size_t value(" << u << ") exceeds the maximum value of int.";
|
||||
}
|
||||
return static_cast<int32_t>(u);
|
||||
}
|
||||
|
||||
inline int64_t UlongToLong(uint64_t u) {
|
||||
if (u > static_cast<uint64_t>((std::numeric_limits<int64_t>::max)())) {
|
||||
MS_LOG(EXCEPTION) << "The uint64_t value(" << u << ") exceeds the maximum value of int64_t.";
|
||||
|
|
|
@ -35,7 +35,7 @@ class StandardNormal(PrimitiveWithInfer):
|
|||
Tensor. The shape is the same as the input `shape`. The dtype is float32.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
|
|
|
@ -0,0 +1,85 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from scipy.stats import kstest
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0, seed2=0):
|
||||
super(Net, self).__init__()
|
||||
self.shape = shape
|
||||
self.seed = seed
|
||||
self.seed2 = seed2
|
||||
self.stdnormal = P.StandardNormal(seed, seed2)
|
||||
|
||||
def construct(self):
|
||||
return self.stdnormal(self.shape)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_net():
|
||||
seed = 10
|
||||
seed2 = 10
|
||||
shape = (5, 6, 8)
|
||||
net = Net(shape, seed, seed2)
|
||||
output = net()
|
||||
assert output.shape == (5, 6, 8)
|
||||
outnumpyflatten_1 = output.asnumpy().flatten()
|
||||
_, p_value = kstest(outnumpyflatten_1, "norm")
|
||||
# p-value is greater than the significance level, cannot reject the hypothesis that the data come from
|
||||
# the standard norm distribution.
|
||||
assert p_value >= 0.05
|
||||
|
||||
seed = 0
|
||||
seed2 = 10
|
||||
shape = (5, 6, 8)
|
||||
net = Net(shape, seed, seed2)
|
||||
output = net()
|
||||
assert output.shape == (5, 6, 8)
|
||||
outnumpyflatten_2 = output.asnumpy().flatten()
|
||||
_, p_value = kstest(outnumpyflatten_2, "norm")
|
||||
assert p_value >= 0.05
|
||||
# same seed should generate same random number
|
||||
assert (outnumpyflatten_1 == outnumpyflatten_2).all()
|
||||
|
||||
seed = 0
|
||||
seed2 = 0
|
||||
shape = (130, 120, 141)
|
||||
net = Net(shape, seed, seed2)
|
||||
output = net()
|
||||
assert output.shape == (130, 120, 141)
|
||||
outnumpyflatten_1 = output.asnumpy().flatten()
|
||||
_, p_value = kstest(outnumpyflatten_1, "norm")
|
||||
assert p_value >= 0.05
|
||||
|
||||
seed = 0
|
||||
seed2 = 0
|
||||
shape = (130, 120, 141)
|
||||
net = Net(shape, seed, seed2)
|
||||
output = net()
|
||||
assert output.shape == (130, 120, 141)
|
||||
outnumpyflatten_2 = output.asnumpy().flatten()
|
||||
_, p_value = kstest(outnumpyflatten_2, "norm")
|
||||
assert p_value >= 0.05
|
||||
# different seed(seed = 0) should generate different random number
|
||||
assert ~(outnumpyflatten_1 == outnumpyflatten_2).all()
|
Loading…
Reference in New Issue