forked from mindspore-Ecosystem/mindspore
dpn add 310 infer
This commit is contained in:
parent
a4e2ab0487
commit
52ee043d1d
|
@ -19,6 +19,10 @@
|
||||||
- [Running on Ascend](#running-on-ascend-1)
|
- [Running on Ascend](#running-on-ascend-1)
|
||||||
- [Evaluation Process](#evaluation-process)
|
- [Evaluation Process](#evaluation-process)
|
||||||
- [Running on Ascend](#running-on-ascend-2)
|
- [Running on Ascend](#running-on-ascend-2)
|
||||||
|
- [Inference Process](#inference-process)
|
||||||
|
- [Export Process](#export-process)
|
||||||
|
- [Infer on Ascend310](#infer-on-ascend310)
|
||||||
|
- [Result](#result)
|
||||||
- [Model Description](#model-description)
|
- [Model Description](#model-description)
|
||||||
- [Performance](#performance)
|
- [Performance](#performance)
|
||||||
- [Accuracy](#accuracy)
|
- [Accuracy](#accuracy)
|
||||||
|
@ -322,6 +326,39 @@ DPN evaluate success!
|
||||||
# (7) Start model inference。
|
# (7) Start model inference。
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## [Inference Process](#contents)
|
||||||
|
|
||||||
|
### [Export MindIR](#contents)
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python export.py --config_path [CONFIG_PATH] --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||||
|
```
|
||||||
|
|
||||||
|
The ckpt_file parameter is required,
|
||||||
|
`FILE_FORMAT` should be in ["AIR", "MINDIR"]
|
||||||
|
|
||||||
|
### [Infer on Ascend310](#contents)
|
||||||
|
|
||||||
|
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||||
|
Current batch_Size for imagenet2012 dataset can only be set to 1.
|
||||||
|
|
||||||
|
```shell
|
||||||
|
# Ascend310 inference
|
||||||
|
bash run_infer_310.sh [MINDIR_PATH] [DATASET_PATH] [DEVICE_ID]
|
||||||
|
```
|
||||||
|
|
||||||
|
- `MINDIR_PATH` specifies path of used "MINDIR" OR "AIR" model.
|
||||||
|
- `DATASET_PATH` specifies path of cifar10 datasets
|
||||||
|
- `DEVICE_ID` is optional, default value is 0.
|
||||||
|
|
||||||
|
### [Result](#contents)
|
||||||
|
|
||||||
|
Inference result is saved in current path, you can find result like this in acc.log file.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
'acc': 0.78766
|
||||||
|
```
|
||||||
|
|
||||||
# [Model Description](#contents)
|
# [Model Description](#contents)
|
||||||
|
|
||||||
## [Performance](#contents)
|
## [Performance](#contents)
|
||||||
|
|
|
@ -0,0 +1,14 @@
|
||||||
|
cmake_minimum_required(VERSION 3.14.1)
|
||||||
|
project(Ascend310Infer)
|
||||||
|
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||||
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||||
|
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||||
|
option(MINDSPORE_PATH "mindspore install path" "")
|
||||||
|
include_directories(${MINDSPORE_PATH})
|
||||||
|
include_directories(${MINDSPORE_PATH}/include)
|
||||||
|
include_directories(${PROJECT_SRC_ROOT})
|
||||||
|
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||||
|
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||||
|
|
||||||
|
add_executable(main src/main.cc src/utils.cc)
|
||||||
|
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,29 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
if [ -d out ]; then
|
||||||
|
rm -rf out
|
||||||
|
fi
|
||||||
|
|
||||||
|
mkdir out
|
||||||
|
cd out || exit
|
||||||
|
|
||||||
|
if [ -f "Makefile" ]; then
|
||||||
|
make clean
|
||||||
|
fi
|
||||||
|
|
||||||
|
cmake .. \
|
||||||
|
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||||
|
make
|
|
@ -0,0 +1,35 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||||
|
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||||
|
|
||||||
|
#include <sys/stat.h>
|
||||||
|
#include <dirent.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
#include <memory>
|
||||||
|
#include "include/api/types.h"
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||||
|
DIR *OpenDir(std::string_view dirName);
|
||||||
|
std::string RealPath(std::string_view path);
|
||||||
|
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||||
|
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||||
|
std::vector<std::string> GetAllFiles(std::string dir_name);
|
||||||
|
std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name);
|
||||||
|
|
||||||
|
#endif
|
|
@ -0,0 +1,181 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include <sys/time.h>
|
||||||
|
#include <gflags/gflags.h>
|
||||||
|
#include <dirent.h>
|
||||||
|
#include <iostream>
|
||||||
|
#include <string>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <iosfwd>
|
||||||
|
#include <vector>
|
||||||
|
#include <fstream>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
|
#include "include/api/model.h"
|
||||||
|
#include "include/api/context.h"
|
||||||
|
#include "include/api/types.h"
|
||||||
|
#include "include/api/serialization.h"
|
||||||
|
#include "include/dataset/vision_ascend.h"
|
||||||
|
#include "include/dataset/execute.h"
|
||||||
|
#include "include/dataset/transforms.h"
|
||||||
|
#include "include/dataset/vision.h"
|
||||||
|
#include "inc/utils.h"
|
||||||
|
|
||||||
|
using mindspore::Context;
|
||||||
|
using mindspore::Serialization;
|
||||||
|
using mindspore::Model;
|
||||||
|
using mindspore::Status;
|
||||||
|
using mindspore::ModelType;
|
||||||
|
using mindspore::GraphCell;
|
||||||
|
using mindspore::kSuccess;
|
||||||
|
using mindspore::MSTensor;
|
||||||
|
using mindspore::dataset::Execute;
|
||||||
|
using mindspore::dataset::vision::Decode;
|
||||||
|
using mindspore::dataset::vision::Resize;
|
||||||
|
using mindspore::dataset::vision::CenterCrop;
|
||||||
|
using mindspore::dataset::vision::Normalize;
|
||||||
|
using mindspore::dataset::vision::HWC2CHW;
|
||||||
|
|
||||||
|
|
||||||
|
DEFINE_string(mindir_path, "", "mindir path");
|
||||||
|
DEFINE_string(dataset_name, "imagenet2012", "['cifar10', 'imagenet2012']");
|
||||||
|
DEFINE_string(input0_path, ".", "input0 path");
|
||||||
|
DEFINE_int32(device_id, 0, "device id");
|
||||||
|
|
||||||
|
int load_model(Model *model, std::vector<MSTensor> *model_inputs, std::string mindir_path, int device_id) {
|
||||||
|
if (RealPath(mindir_path).empty()) {
|
||||||
|
std::cout << "Invalid mindir" << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto context = std::make_shared<Context>();
|
||||||
|
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||||
|
ascend310->SetDeviceID(device_id);
|
||||||
|
context->MutableDeviceInfo().push_back(ascend310);
|
||||||
|
mindspore::Graph graph;
|
||||||
|
Serialization::Load(mindir_path, ModelType::kMindIR, &graph);
|
||||||
|
|
||||||
|
Status ret = model->Build(GraphCell(graph), context);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "ERROR: Build failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
*model_inputs = model->GetInputs();
|
||||||
|
if (model_inputs->empty()) {
|
||||||
|
std::cout << "Invalid model, inputs is empty." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||||
|
|
||||||
|
Model model;
|
||||||
|
std::vector<MSTensor> model_inputs;
|
||||||
|
load_model(&model, &model_inputs, FLAGS_mindir_path, FLAGS_device_id);
|
||||||
|
|
||||||
|
std::map<double, double> costTime_map;
|
||||||
|
struct timeval start = {0};
|
||||||
|
struct timeval end = {0};
|
||||||
|
double startTimeMs;
|
||||||
|
double endTimeMs;
|
||||||
|
|
||||||
|
if (FLAGS_dataset_name == "cifar10") {
|
||||||
|
auto input0_files = GetAllFiles(FLAGS_input0_path);
|
||||||
|
if (input0_files.empty()) {
|
||||||
|
std::cout << "ERROR: no input data." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
size_t size = input0_files.size();
|
||||||
|
for (size_t i = 0; i < size; ++i) {
|
||||||
|
std::vector<MSTensor> inputs;
|
||||||
|
std::vector<MSTensor> outputs;
|
||||||
|
std::cout << "Start predict input files:" << input0_files[i] <<std::endl;
|
||||||
|
auto input0 = ReadFileToTensor(input0_files[i]);
|
||||||
|
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
|
||||||
|
input0.Data().get(), input0.DataSize());
|
||||||
|
|
||||||
|
gettimeofday(&start, nullptr);
|
||||||
|
Status ret = model.Predict(inputs, &outputs);
|
||||||
|
gettimeofday(&end, nullptr);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "Predict " << input0_files[i] << " failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||||
|
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||||
|
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
|
||||||
|
WriteResult(input0_files[i], outputs);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
auto input0_files = GetAllInputData(FLAGS_input0_path);
|
||||||
|
if (input0_files.empty()) {
|
||||||
|
std::cout << "ERROR: no input data." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
size_t size = input0_files.size();
|
||||||
|
for (size_t i = 0; i < size; ++i) {
|
||||||
|
for (size_t j = 0; j < input0_files[i].size(); ++j) {
|
||||||
|
std::vector<MSTensor> inputs;
|
||||||
|
std::vector<MSTensor> outputs;
|
||||||
|
std::cout << "Start predict input files:" << input0_files[i][j] <<std::endl;
|
||||||
|
auto decode = Decode();
|
||||||
|
auto resize = Resize({256});
|
||||||
|
auto centercrop = CenterCrop({224, 224});
|
||||||
|
auto normalize = Normalize({123.675, 116.28, 103.53}, {58.395, 57.12, 57.375});
|
||||||
|
auto hwc2chw = HWC2CHW();
|
||||||
|
|
||||||
|
Execute SingleOp({decode, resize, centercrop, normalize, hwc2chw});
|
||||||
|
auto imgDvpp = std::make_shared<MSTensor>();
|
||||||
|
SingleOp(ReadFileToTensor(input0_files[i][j]), imgDvpp.get());
|
||||||
|
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
|
||||||
|
imgDvpp->Data().get(), imgDvpp->DataSize());
|
||||||
|
gettimeofday(&start, nullptr);
|
||||||
|
Status ret = model.Predict(inputs, &outputs);
|
||||||
|
gettimeofday(&end, nullptr);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "Predict " << input0_files[i][j] << " failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||||
|
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||||
|
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
|
||||||
|
WriteResult(input0_files[i][j], outputs);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
double average = 0.0;
|
||||||
|
int inferCount = 0;
|
||||||
|
|
||||||
|
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||||
|
double diff = 0.0;
|
||||||
|
diff = iter->second - iter->first;
|
||||||
|
average += diff;
|
||||||
|
inferCount++;
|
||||||
|
}
|
||||||
|
average = average / inferCount;
|
||||||
|
std::stringstream timeCost;
|
||||||
|
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
|
||||||
|
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
|
||||||
|
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
|
||||||
|
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
|
||||||
|
fileStream << timeCost.str();
|
||||||
|
fileStream.close();
|
||||||
|
costTime_map.clear();
|
||||||
|
return 0;
|
||||||
|
}
|
|
@ -0,0 +1,185 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <fstream>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <iostream>
|
||||||
|
#include "inc/utils.h"
|
||||||
|
|
||||||
|
using mindspore::MSTensor;
|
||||||
|
using mindspore::DataType;
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name) {
|
||||||
|
std::vector<std::vector<std::string>> ret;
|
||||||
|
|
||||||
|
DIR *dir = OpenDir(dir_name);
|
||||||
|
if (dir == nullptr) {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
struct dirent *filename;
|
||||||
|
/* read all the files in the dir ~ */
|
||||||
|
std::vector<std::string> sub_dirs;
|
||||||
|
while ((filename = readdir(dir)) != nullptr) {
|
||||||
|
std::string d_name = std::string(filename->d_name);
|
||||||
|
// get rid of "." and ".."
|
||||||
|
if (d_name == "." || d_name == ".." || d_name.empty()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
std::string dir_path = RealPath(std::string(dir_name) + "/" + filename->d_name);
|
||||||
|
struct stat s;
|
||||||
|
lstat(dir_path.c_str(), &s);
|
||||||
|
if (!S_ISDIR(s.st_mode)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
sub_dirs.emplace_back(dir_path);
|
||||||
|
}
|
||||||
|
std::sort(sub_dirs.begin(), sub_dirs.end());
|
||||||
|
|
||||||
|
(void)std::transform(sub_dirs.begin(), sub_dirs.end(), std::back_inserter(ret),
|
||||||
|
[](const std::string &d) { return GetAllFiles(d); });
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string dir_name) {
|
||||||
|
struct dirent *filename;
|
||||||
|
DIR *dir = OpenDir(dir_name);
|
||||||
|
if (dir == nullptr) {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> res;
|
||||||
|
while ((filename = readdir(dir)) != nullptr) {
|
||||||
|
std::string d_name = std::string(filename->d_name);
|
||||||
|
if (d_name == "." || d_name == ".." || d_name.size() <= 3) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
res.emplace_back(std::string(dir_name) + "/" + filename->d_name);
|
||||||
|
}
|
||||||
|
std::sort(res.begin(), res.end());
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||||
|
struct dirent *filename;
|
||||||
|
DIR *dir = OpenDir(dirName);
|
||||||
|
if (dir == nullptr) {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
std::vector<std::string> res;
|
||||||
|
while ((filename = readdir(dir)) != nullptr) {
|
||||||
|
std::string dName = std::string(filename->d_name);
|
||||||
|
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||||
|
}
|
||||||
|
std::sort(res.begin(), res.end());
|
||||||
|
for (auto &f : res) {
|
||||||
|
std::cout << "image file: " << f << std::endl;
|
||||||
|
}
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||||
|
std::string homePath = "./result_Files";
|
||||||
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||||
|
size_t outputSize;
|
||||||
|
std::shared_ptr<const void> netOutput;
|
||||||
|
netOutput = outputs[i].Data();
|
||||||
|
outputSize = outputs[i].DataSize();
|
||||||
|
int pos = imageFile.rfind('/');
|
||||||
|
std::string fileName(imageFile, pos + 1);
|
||||||
|
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
|
||||||
|
std::string outFileName = homePath + "/" + fileName;
|
||||||
|
FILE *outputFile = fopen(outFileName.c_str(), "wb");
|
||||||
|
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||||
|
fclose(outputFile);
|
||||||
|
outputFile = nullptr;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||||
|
if (file.empty()) {
|
||||||
|
std::cout << "Pointer file is nullptr" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
std::ifstream ifs(file);
|
||||||
|
if (!ifs.good()) {
|
||||||
|
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!ifs.is_open()) {
|
||||||
|
std::cout << "File: " << file << "open failed" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
ifs.seekg(0, std::ios::end);
|
||||||
|
size_t size = ifs.tellg();
|
||||||
|
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||||
|
|
||||||
|
ifs.seekg(0, std::ios::beg);
|
||||||
|
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||||
|
ifs.close();
|
||||||
|
|
||||||
|
return buffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
DIR *OpenDir(std::string_view dirName) {
|
||||||
|
if (dirName.empty()) {
|
||||||
|
std::cout << " dirName is null ! " << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
std::string realPath = RealPath(dirName);
|
||||||
|
struct stat s;
|
||||||
|
lstat(realPath.c_str(), &s);
|
||||||
|
if (!S_ISDIR(s.st_mode)) {
|
||||||
|
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
DIR *dir;
|
||||||
|
dir = opendir(realPath.c_str());
|
||||||
|
if (dir == nullptr) {
|
||||||
|
std::cout << "Can not open dir " << dirName << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||||
|
return dir;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string RealPath(std::string_view path) {
|
||||||
|
char realPathMem[PATH_MAX] = {0};
|
||||||
|
char *realPathRet = nullptr;
|
||||||
|
realPathRet = realpath(path.data(), realPathMem);
|
||||||
|
if (realPathRet == nullptr) {
|
||||||
|
std::cout << "File: " << path << " is not exist.";
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string realPath(realPathMem);
|
||||||
|
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||||
|
return realPath;
|
||||||
|
}
|
|
@ -0,0 +1,51 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# less required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""postprocess for 310 inference"""
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.nn import Top1CategoricalAccuracy, Top5CategoricalAccuracy
|
||||||
|
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="postprocess")
|
||||||
|
parser.add_argument("--result_dir", type=str, required=True, help="result files path.")
|
||||||
|
parser.add_argument("--label_dir", type=str, required=True, help="image file path.")
|
||||||
|
parser.add_argument('--dataset_name', type=str, choices=["cifar10", "imagenet2012"], default="imagenet2012")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
def calcul_acc(lab, preds):
|
||||||
|
return sum(1 for x, y in zip(lab, preds) if x == y) / len(lab)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
batch_size = 1
|
||||||
|
top1_acc = Top1CategoricalAccuracy()
|
||||||
|
rst_path = args.result_dir
|
||||||
|
label_list = []
|
||||||
|
pred_list = []
|
||||||
|
#from src.config import config2 as cfg
|
||||||
|
top5_acc = Top5CategoricalAccuracy()
|
||||||
|
file_list = os.listdir(rst_path)
|
||||||
|
with open(args.label_dir, "r") as label:
|
||||||
|
labels = json.load(label)
|
||||||
|
for f in file_list:
|
||||||
|
label = f.split("_0.bin")[0] + ".JPEG"
|
||||||
|
label_list.append(labels[label])
|
||||||
|
pred = np.fromfile(os.path.join(rst_path, f), np.float32)
|
||||||
|
pred = pred.reshape(batch_size, int(pred.shape[0] / batch_size))
|
||||||
|
top1_acc.update(pred, [labels[label],])
|
||||||
|
top5_acc.update(pred, [labels[label],])
|
||||||
|
print("Top1 acc: ", top1_acc.eval())
|
||||||
|
print("Top5 acc: ", top5_acc.eval())
|
|
@ -0,0 +1,48 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""preprocess"""
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
def create_label(result_path, dir_path):
|
||||||
|
print("[WARNING] Create imagenet label. Currently only use for Imagenet2012!")
|
||||||
|
dirs = os.listdir(dir_path)
|
||||||
|
file_list = []
|
||||||
|
for file in dirs:
|
||||||
|
file_list.append(file)
|
||||||
|
file_list = sorted(file_list)
|
||||||
|
|
||||||
|
total = 0
|
||||||
|
img_label = {}
|
||||||
|
for i, file_dir in enumerate(file_list):
|
||||||
|
files = os.listdir(os.path.join(dir_path, file_dir))
|
||||||
|
for f in files:
|
||||||
|
img_label[f] = i
|
||||||
|
total += len(files)
|
||||||
|
|
||||||
|
json_file = os.path.join(result_path, "imagenet_label.json")
|
||||||
|
with open(json_file, "w+") as label:
|
||||||
|
json.dump(img_label, label)
|
||||||
|
|
||||||
|
print("[INFO] Completed! Total {} data.".format(total))
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser('preprocess')
|
||||||
|
parser.add_argument('--dataset', type=str, choices=["cifar10", "imagenet2012"], default="cifar10")
|
||||||
|
parser.add_argument('--data_path', type=str, default='', help='eval data dir')
|
||||||
|
parser.add_argument('--result_path', type=str, default='./preprocess_Result/', help='result path')
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
create_label(args.result_path, args.data_path)
|
|
@ -0,0 +1,130 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if [[ $# -lt 2 || $# -gt 3 ]]; then
|
||||||
|
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [DATASET_PATH] [DEVICE_ID]
|
||||||
|
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
get_real_path(){
|
||||||
|
if [ "${1:0:1}" == "/" ]; then
|
||||||
|
echo "$1"
|
||||||
|
else
|
||||||
|
echo "$(realpath -m $PWD/$1)"
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
model=$(get_real_path $1)
|
||||||
|
|
||||||
|
dataset_path=$(get_real_path $2)
|
||||||
|
dataset_name="imagenet2012"
|
||||||
|
|
||||||
|
device_id=0
|
||||||
|
if [ $# == 3 ]; then
|
||||||
|
device_id=$3
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "mindir name: "$model
|
||||||
|
echo "dataset path: "$dataset_path
|
||||||
|
echo "device id: "$device_id
|
||||||
|
|
||||||
|
export ASCEND_HOME=/usr/local/Ascend/
|
||||||
|
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||||
|
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||||
|
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||||
|
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||||
|
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||||
|
else
|
||||||
|
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||||
|
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||||
|
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||||
|
fi
|
||||||
|
|
||||||
|
export ASCEND_HOME=/usr/local/Ascend
|
||||||
|
|
||||||
|
export PATH=$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/toolkit/bin:$PATH
|
||||||
|
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib/:/usr/local/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:/usr/local/Ascend/toolkit/lib64:$LD_LIBRARY_PATH
|
||||||
|
|
||||||
|
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages
|
||||||
|
|
||||||
|
export PATH=/usr/local/python375/bin:$PATH
|
||||||
|
export NPU_HOST_LIB=/usr/local/Ascend/acllib/lib64/stub
|
||||||
|
export ASCEND_OPP_PATH=/usr/local/Ascend/opp
|
||||||
|
export ASCEND_AICPU_PATH=/usr/local/Ascend
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib64/:$LD_LIBRARY_PATH
|
||||||
|
|
||||||
|
function preprocess_data()
|
||||||
|
{
|
||||||
|
if [ -d preprocess_Result ]; then
|
||||||
|
rm -rf ./preprocess_Result
|
||||||
|
fi
|
||||||
|
mkdir preprocess_Result
|
||||||
|
python3.7 ../preprocess.py --dataset=$dataset_name --data_path=$dataset_path --result_path=./preprocess_Result/
|
||||||
|
}
|
||||||
|
|
||||||
|
function compile_app()
|
||||||
|
{
|
||||||
|
cd ../ascend310_infer/ || exit
|
||||||
|
bash build.sh &> build.log
|
||||||
|
}
|
||||||
|
|
||||||
|
function infer()
|
||||||
|
{
|
||||||
|
cd - || exit
|
||||||
|
if [ -d result_Files ]; then
|
||||||
|
rm -rf ./result_Files
|
||||||
|
fi
|
||||||
|
if [ -d time_Result ]; then
|
||||||
|
rm -rf ./time_Result
|
||||||
|
fi
|
||||||
|
mkdir result_Files
|
||||||
|
mkdir time_Result
|
||||||
|
|
||||||
|
../ascend310_infer/out/main --mindir_path=$model --dataset_name=$dataset_name --input0_path=$dataset_path --device_id=$device_id &> infer.log
|
||||||
|
}
|
||||||
|
|
||||||
|
function cal_acc()
|
||||||
|
{
|
||||||
|
|
||||||
|
python3.7 ../postprocess.py --result_dir=./result_Files --label_dir=./preprocess_Result/imagenet_label.json &> acc.log
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
preprocess_data
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "preprocess dataset failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
compile_app
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "compile app code failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
infer
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo " execute inference failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
cal_acc
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "calculate accuracy failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
Loading…
Reference in New Issue