!46971 [MD] fix code check warnings

Merge pull request !46971 from Mohammad Motallebi/fix_code_check_Dec
This commit is contained in:
i-robot 2022-12-20 15:55:21 +00:00 committed by Gitee
commit 50fb77d84f
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
13 changed files with 50 additions and 46 deletions

View File

@ -54,7 +54,7 @@ Status TensorRow::Clone(TensorRow *new_tr) const {
for (const std::shared_ptr<Tensor> &s : row_) { for (const std::shared_ptr<Tensor> &s : row_) {
std::shared_ptr<Tensor> d; std::shared_ptr<Tensor> d;
RETURN_IF_NOT_OK(Tensor::CreateFromTensor(s, &d)); RETURN_IF_NOT_OK(Tensor::CreateFromTensor(s, &d));
new_tr->row_.emplace_back(std::move(d)); (void)new_tr->row_.emplace_back(std::move(d));
} }
new_tr->id_ = id_; new_tr->id_ = id_;
new_tr->path_ = path_; new_tr->path_ = path_;

View File

@ -40,7 +40,7 @@ Status CacheLookupOp::WorkerEntry(int32_t worker_id) {
RETURN_IF_NOT_OK(FetchFromCache(worker_id)); RETURN_IF_NOT_OK(FetchFromCache(worker_id));
return Status::OK(); return Status::OK();
} }
Status CacheLookupOp::ResetSampler(const bool failover_reset) { return Status::OK(); } Status CacheLookupOp::ResetSampler([[maybe_unused]] const bool failover_reset) { return Status::OK(); }
Status CacheLookupOp::HandshakeRandomAccessOp(const RandomAccessOp *op, const int32_t reset_count) { Status CacheLookupOp::HandshakeRandomAccessOp(const RandomAccessOp *op, const int32_t reset_count) {
RETURN_UNEXPECTED_IF_NULL(op); RETURN_UNEXPECTED_IF_NULL(op);
// We act like a sampler and as a dataset op. During handshake with leaf op, // We act like a sampler and as a dataset op. During handshake with leaf op,

View File

@ -41,8 +41,8 @@ class CacheLookupOp : public CacheBase, public SamplerRT {
Status operator()() override; Status operator()() override;
Status WorkerEntry(int32_t worker_id) override; Status WorkerEntry(int32_t worker_id) override;
// As a sampler, we override the following functions // As a sampler, we override the following functions
Status ResetSampler(const bool failover_reset = false) override; Status ResetSampler(const bool failover_reset) override;
Status HandshakeRandomAccessOp(const RandomAccessOp *op, const int32_t reset_count = 0) override; Status HandshakeRandomAccessOp(const RandomAccessOp *op, const int32_t reset_count) override;
Status InitSampler() override; Status InitSampler() override;
Status GetNextSample(TensorRow *out) override; Status GetNextSample(TensorRow *out) override;
void Print(std::ostream &out, bool show_all) const override; void Print(std::ostream &out, bool show_all) const override;

View File

@ -49,8 +49,8 @@ class ParallelOp : public DatasetOp {
epoch_sync_flag_(false), epoch_sync_flag_(false),
num_workers_(num_workers), num_workers_(num_workers),
next_worker_id_(0), next_worker_id_(0),
strategy_{nullptr}, worker_connector_size_(op_connector_size),
worker_connector_size_(op_connector_size) { strategy_{nullptr} {
// reduce excessive memory usage with high parallelism // reduce excessive memory usage with high parallelism
constexpr int32_t worker_limit = 4; constexpr int32_t worker_limit = 4;
if (num_workers_ > worker_limit) { if (num_workers_ > worker_limit) {
@ -168,17 +168,18 @@ class ParallelOp : public DatasetOp {
class RowHandlingStrategy { class RowHandlingStrategy {
public: public:
explicit RowHandlingStrategy(ParallelOp *op) : op_(op) {} explicit RowHandlingStrategy(ParallelOp *op) : op_(op) {}
virtual ~RowHandlingStrategy() = default;
virtual Status HandleHealthyRow(TensorRow *row) { virtual Status HandleHealthyRow([[maybe_unused]] TensorRow *row) {
++this->op_->ep_step_; ++this->op_->ep_step_;
++this->op_->total_step_; ++this->op_->total_step_;
RETURN_IF_NOT_OK(this->op_->callback_manager_.StepEnd( RETURN_IF_NOT_OK(this->op_->callback_manager_.StepEnd(CallbackParam(
CallbackParam(this->op_->current_epochs_ + 1, this->op_->ep_step_, this->op_->total_step_))); static_cast<int64_t>(this->op_->current_epochs_) + 1, this->op_->ep_step_, this->op_->total_step_)));
return this->op_->out_connector_->Add(std::move(*row)); return this->op_->out_connector_->Add(std::move(*row));
} }
virtual Status HandleErrorRow(TensorRow *row) = 0; virtual Status HandleErrorRow([[maybe_unused]] TensorRow *row) = 0;
virtual Status HandleEOE(TensorRow *row) { virtual Status HandleEOE([[maybe_unused]] TensorRow *row) {
this->op_->current_repeats_++; this->op_->current_repeats_++;
// check whether this is the end of a real epoch (not all eoe signals end of epoch) // check whether this is the end of a real epoch (not all eoe signals end of epoch)
if (this->op_->current_repeats_ % this->op_->GetOpNumRepeatsPerEpoch() == 0) { if (this->op_->current_repeats_ % this->op_->GetOpNumRepeatsPerEpoch() == 0) {
@ -189,9 +190,9 @@ class ParallelOp : public DatasetOp {
} }
return op_->out_connector_->Add(std::move(*row)); return op_->out_connector_->Add(std::move(*row));
} }
virtual Status HandleEOF(TensorRow *row) { virtual Status HandleEOF([[maybe_unused]] TensorRow *row) {
RETURN_IF_NOT_OK(this->op_->callback_manager_.End( RETURN_IF_NOT_OK(this->op_->callback_manager_.End(CallbackParam(
CallbackParam(this->op_->current_epochs_ + 1, this->op_->ep_step_, this->op_->total_step_))); static_cast<int64_t>(this->op_->current_epochs_) + 1, this->op_->ep_step_, this->op_->total_step_)));
return op_->out_connector_->Add(std::move(*row)); return op_->out_connector_->Add(std::move(*row));
} }
@ -202,7 +203,7 @@ class ParallelOp : public DatasetOp {
class ErrorStrategy : public RowHandlingStrategy { class ErrorStrategy : public RowHandlingStrategy {
public: public:
using RowHandlingStrategy::RowHandlingStrategy; using RowHandlingStrategy::RowHandlingStrategy;
Status HandleErrorRow(TensorRow *row) override { Status HandleErrorRow([[maybe_unused]] TensorRow *row) override {
return Status(StatusCode::kMDUnexpectedError, return Status(StatusCode::kMDUnexpectedError,
"[Internal Error] Error row is detected in collector while Error strategy is set to error out!"); "[Internal Error] Error row is detected in collector while Error strategy is set to error out!");
} }
@ -211,14 +212,14 @@ class ParallelOp : public DatasetOp {
class SkipStrategy : public RowHandlingStrategy { class SkipStrategy : public RowHandlingStrategy {
public: public:
using RowHandlingStrategy::RowHandlingStrategy; using RowHandlingStrategy::RowHandlingStrategy;
Status HandleErrorRow(TensorRow *row) override { return Status::OK(); } Status HandleErrorRow([[maybe_unused]] TensorRow *row) override { return Status::OK(); }
}; };
class ReplaceStrategy : public RowHandlingStrategy { class ReplaceStrategy : public RowHandlingStrategy {
public: public:
using RowHandlingStrategy::RowHandlingStrategy; using RowHandlingStrategy::RowHandlingStrategy;
Status HandleHealthyRow(TensorRow *row) override { Status HandleHealthyRow([[maybe_unused]] TensorRow *row) override {
CHECK_FAIL_RETURN_UNEXPECTED(backup_index_ < kCachedRowsSize, CHECK_FAIL_RETURN_UNEXPECTED(backup_index_ < kCachedRowsSize,
"[Internal Error] Number of cached rows is beyond the number set."); "[Internal Error] Number of cached rows is beyond the number set.");
if (backup_index_ < kCachedRowsSize - 1) { // cache has used row(s) or is not full if (backup_index_ < kCachedRowsSize - 1) { // cache has used row(s) or is not full
@ -239,12 +240,12 @@ class ParallelOp : public DatasetOp {
// send the healthy row to next op // send the healthy row to next op
++this->op_->ep_step_; ++this->op_->ep_step_;
++this->op_->total_step_; ++this->op_->total_step_;
RETURN_IF_NOT_OK(this->op_->callback_manager_.StepEnd( RETURN_IF_NOT_OK(this->op_->callback_manager_.StepEnd(CallbackParam(
CallbackParam(this->op_->current_epochs_ + 1, this->op_->ep_step_, this->op_->total_step_))); static_cast<int64_t>(this->op_->current_epochs_) + 1, this->op_->ep_step_, this->op_->total_step_)));
return this->op_->out_connector_->Add(std::move(*row)); return this->op_->out_connector_->Add(std::move(*row));
} }
Status HandleErrorRow(TensorRow *row) override { Status HandleErrorRow([[maybe_unused]] TensorRow *row) override {
CHECK_FAIL_RETURN_UNEXPECTED(backup_index_ < kCachedRowsSize, CHECK_FAIL_RETURN_UNEXPECTED(backup_index_ < kCachedRowsSize,
"[Internal Error] Number of cached rows is beyond the number set."); "[Internal Error] Number of cached rows is beyond the number set.");
// cache is not full of unused rows // cache is not full of unused rows
@ -256,7 +257,7 @@ class ParallelOp : public DatasetOp {
return AddFromCache(); return AddFromCache();
} }
Status HandleEOE(TensorRow *row) override { Status HandleEOE([[maybe_unused]] TensorRow *row) override {
CHECK_FAIL_RETURN_UNEXPECTED(missing_errors_ == 0 || !IsCacheEmpty(), CHECK_FAIL_RETURN_UNEXPECTED(missing_errors_ == 0 || !IsCacheEmpty(),
"All data is garbage and cannot be replaced."); "All data is garbage and cannot be replaced.");
// send outstanding rows first and then send eoe // send outstanding rows first and then send eoe
@ -267,19 +268,23 @@ class ParallelOp : public DatasetOp {
return RowHandlingStrategy::HandleEOE(row); return RowHandlingStrategy::HandleEOE(row);
} }
Status HandleEOF([[maybe_unused]] TensorRow *row) override {
// release memory
std::deque<TensorRow>().swap(backup_rows);
return RowHandlingStrategy::HandleEOF(row);
}
private: private:
Status AddFromCache() { Status AddFromCache() {
CHECK_FAIL_RETURN_UNEXPECTED(backup_rows.size() > 0, "Cannot add a row from cache since cache is empty!"); CHECK_FAIL_RETURN_UNEXPECTED(backup_rows.size() > 0, "Cannot add a row from cache since cache is empty!");
// Note: If backup_index_ is negative (error samples at the end of data), const TensorRow &cached_row = backup_rows[static_cast<size_t>(backup_index_) % backup_rows.size()];
// the modulo division with size_t will be result in 0, and backup_rows[0] accessed.
const TensorRow &cached_row = backup_rows[backup_index_ % backup_rows.size()];
TensorRow copy_row; TensorRow copy_row;
RETURN_IF_NOT_OK(cached_row.Clone(&copy_row)); RETURN_IF_NOT_OK(cached_row.Clone(&copy_row));
backup_index_--; backup_index_--;
++this->op_->ep_step_; ++this->op_->ep_step_;
++this->op_->total_step_; ++this->op_->total_step_;
RETURN_IF_NOT_OK(this->op_->callback_manager_.StepEnd( RETURN_IF_NOT_OK(this->op_->callback_manager_.StepEnd(CallbackParam(
CallbackParam(this->op_->current_epochs_ + 1, this->op_->ep_step_, this->op_->total_step_))); static_cast<int64_t>(this->op_->current_epochs_) + 1, this->op_->ep_step_, this->op_->total_step_)));
return this->op_->out_connector_->Add(std::move(copy_row)); return this->op_->out_connector_->Add(std::move(copy_row));
} }
@ -291,7 +296,7 @@ class ParallelOp : public DatasetOp {
"[Internal Error] Inserting another row to cache while cache is already full of unused rows."); "[Internal Error] Inserting another row to cache while cache is already full of unused rows.");
TensorRow copy_row; TensorRow copy_row;
RETURN_IF_NOT_OK(row.Clone(&copy_row)); RETURN_IF_NOT_OK(row.Clone(&copy_row));
backup_rows.emplace_front(std::move(copy_row)); (void)backup_rows.emplace_front(std::move(copy_row));
backup_index_++; backup_index_++;
return Status::OK(); return Status::OK();
} }

View File

@ -54,7 +54,7 @@ Status ShuffleOp::PrepareOperator() {
// in reset mode, we need to move forward the random generator seed. // in reset mode, we need to move forward the random generator seed.
if (GlobalContext::config_manager()->fast_recovery() && op_current_repeats_ > 0) { if (GlobalContext::config_manager()->fast_recovery() && op_current_repeats_ > 0) {
for (auto i = 0; i < op_current_repeats_; i++) { for (auto i = 0; i < op_current_repeats_; i++) {
SelfReset(); RETURN_IF_NOT_OK(SelfReset());
} }
} }
return Status::OK(); return Status::OK();

View File

@ -68,8 +68,8 @@ Status MappableLeafOp::operator()() {
RETURN_IF_NOT_OK(callback_manager_.Begin(CallbackParam(0, ep_step, total_step))); RETURN_IF_NOT_OK(callback_manager_.Begin(CallbackParam(0, ep_step, total_step)));
TensorRow sample_row; TensorRow sample_row;
RETURN_IF_NOT_OK(sampler_->GetNextSample(&sample_row)); RETURN_IF_NOT_OK(sampler_->GetNextSample(&sample_row));
while (true) { // each iteration is 1 repeat (usually =1 epoch, unless we have a repeat node above us), breaks when for (;;) { // each iteration is 1 repeat (usually =1 epoch, unless we have a repeat node above us), breaks when
// IsLastIteration() is true // IsLastIteration() is true
if (op_current_repeats_ % GetOpNumRepeatsPerEpoch() == 0) { if (op_current_repeats_ % GetOpNumRepeatsPerEpoch() == 0) {
ep_step = 0; ep_step = 0;
RETURN_IF_NOT_OK(callback_manager_.EpochBegin(CallbackParam(op_current_epochs_ + 1, ep_step, total_step))); RETURN_IF_NOT_OK(callback_manager_.EpochBegin(CallbackParam(op_current_epochs_ + 1, ep_step, total_step)));

View File

@ -41,8 +41,8 @@ NonMappableLeafOp::NonMappableLeafOp(int32_t num_workers, int32_t worker_connect
load_io_block_queue_(true), load_io_block_queue_(true),
shuffle_files_(shuffle_files), shuffle_files_(shuffle_files),
num_rows_per_shard_(0), num_rows_per_shard_(0),
num_rows_(0),
compression_type_(compression_type), compression_type_(compression_type),
num_rows_(0),
shuffled_keys_({}), shuffled_keys_({}),
seed_(0) { seed_(0) {
worker_connector_size_ = worker_connector_size; worker_connector_size_ = worker_connector_size;

View File

@ -58,7 +58,7 @@ class DistributedSamplerRT : public SamplerRT {
/// \brief Reset for next epoch. /// \brief Reset for next epoch.
/// \param[in] failover_reset A boolean to show whether we are resetting the pipeline /// \param[in] failover_reset A boolean to show whether we are resetting the pipeline
/// \return Status The status code returned /// \return Status The status code returned
Status ResetSampler(const bool failover_reset = false) override; Status ResetSampler(const bool failover_reset) override;
int64_t GetDeviceID() { return device_id_; } int64_t GetDeviceID() { return device_id_; }

View File

@ -43,7 +43,7 @@ class PythonSamplerRT : public SamplerRT {
/// \brief Reset for next epoch. /// \brief Reset for next epoch.
/// \param[in] failover_reset A boolean to show whether we are resetting the pipeline /// \param[in] failover_reset A boolean to show whether we are resetting the pipeline
/// \return Status The status code returned /// \return Status The status code returned
Status ResetSampler(const bool failover_reset = false) override; Status ResetSampler(const bool failover_reset) override;
// Op calls this to get next Sample that contains all the sampleIds // Op calls this to get next Sample that contains all the sampleIds
// @param TensorRow to be returned to corresponding Dataset Op // @param TensorRow to be returned to corresponding Dataset Op

View File

@ -42,7 +42,7 @@ class SequentialSamplerRT : public SamplerRT {
/// \brief Reset for next epoch. /// \brief Reset for next epoch.
/// \param[in] failover_reset A boolean to show whether we are resetting the pipeline /// \param[in] failover_reset A boolean to show whether we are resetting the pipeline
/// \return Status The status code returned /// \return Status The status code returned
Status ResetSampler(const bool failover_reset = false) override; Status ResetSampler(const bool failover_reset) override;
// Op calls this to get next Sample that contains all the sampleIds // Op calls this to get next Sample that contains all the sampleIds
// @param TensorRow to be returned to corresponding Dataset Op // @param TensorRow to be returned to corresponding Dataset Op

View File

@ -240,8 +240,8 @@ Status TreeAdapter::Compile(const std::shared_ptr<DatasetNode> &input_ir, int32_
Status TreeAdapter::AdjustReset(const int64_t epoch_num) { Status TreeAdapter::AdjustReset(const int64_t epoch_num) {
if (GlobalContext::config_manager()->fast_recovery() && epoch_num > 0) { if (GlobalContext::config_manager()->fast_recovery() && epoch_num > 0) {
MS_LOG(INFO) << "Adjusting dataset pipeline for failover reset to start on epoch: " << (epoch_num + 1); MS_LOG(INFO) << "Adjusting dataset pipeline for failover reset to start on epoch: " << (epoch_num + 1);
for (auto op = tree_->begin(); op != tree_->end(); op++) { for (auto op = tree_->begin(); op != tree_->end(); ++op) {
op->SetEpoch(epoch_num); RETURN_IF_NOT_OK(op->SetEpoch(epoch_num));
} }
} }
return Status::OK(); return Status::OK();

View File

@ -17,7 +17,6 @@
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_DATASETS_H_ #ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_DATASETS_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_DATASETS_H_ #define MINDSPORE_CCSRC_MINDDATA_DATASET_INCLUDE_DATASET_DATASETS_H_
#include <sys/stat.h>
#include <algorithm> #include <algorithm>
#include <functional> #include <functional>
#include <map> #include <map>

View File

@ -124,7 +124,7 @@ def _reset_training_dataset(step, epoch):
""" """
dataset = _get_training_dataset() dataset = _get_training_dataset()
if dataset is not None: if dataset is not None:
dataset._reset(step, epoch) # pylint: disable=W0212 dataset._reset(step, epoch) # pylint: disable=protected-access
else: else:
raise RuntimeError("Training dataset is not set.") raise RuntimeError("Training dataset is not set.")
@ -3698,9 +3698,6 @@ class _ToDevice:
def send(self): def send(self):
self._to_device.Send() self._to_device.Send()
def _reset(self, step, epoch):
self._to_device.Reset(step, epoch)
def stop_send(self): def stop_send(self):
""" """
send stop send signal to pipeline, it is used when end of sequence is sent at the epoch end. send stop send signal to pipeline, it is used when end of sequence is sent at the epoch end.
@ -3739,6 +3736,9 @@ class _ToDevice:
offload_model = GetOffloadModel(self._to_device, col_names) offload_model = GetOffloadModel(self._to_device, col_names)
return offload_model return offload_model
def _reset(self, step, epoch):
self._to_device.Reset(step, epoch)
class TransferDataset(Dataset): class TransferDataset(Dataset):
""" """
@ -3809,11 +3809,6 @@ class TransferDataset(Dataset):
if self._to_device is not None: if self._to_device is not None:
self._to_device.continue_send() self._to_device.continue_send()
def _reset(self, step, epoch):
if self._to_device is not None:
logger.info("Reset the dataset pipeline to step: " + str(step) + ", epoch: " + str(epoch))
self._to_device._reset(step, epoch) # pylint: disable=W0212
def get_data_info(self): def get_data_info(self):
""" """
Get type and shape of current batch Get type and shape of current batch
@ -3835,6 +3830,11 @@ class TransferDataset(Dataset):
if self._to_device is not None: if self._to_device is not None:
self._to_device.release() self._to_device.release()
def _reset(self, step, epoch):
if self._to_device is not None:
logger.info("Reset the dataset pipeline to step: " + str(step) + ", epoch: " + str(epoch))
self._to_device._reset(step, epoch) # pylint: disable=protected-access
class Schema: class Schema:
""" """