!41677 modify format

Merge pull request !41677 from 俞涵/code_docs_0819
This commit is contained in:
i-robot 2022-09-09 02:08:11 +00:00 committed by Gitee
commit 50ed6ee1d5
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
33 changed files with 36 additions and 36 deletions

View File

@ -24,7 +24,7 @@
- auto: 为不同处理器设置专家推荐的混合精度等级如在GPU上设为"O2"在Ascend上设为"O3"。该设置方式可能在部分场景下不适用,建议用户根据具体的网络模型自定义设置 `amp_level` - auto: 为不同处理器设置专家推荐的混合精度等级如在GPU上设为"O2"在Ascend上设为"O3"。该设置方式可能在部分场景下不适用,建议用户根据具体的网络模型自定义设置 `amp_level`
在GPU上建议使用"O2"在Ascend上建议使用"O3"。 在GPU上建议使用"O2"在Ascend上建议使用"O3"。
通过 `kwargs` 设置 `keep_batchnorm_fp32` 可修改BatchNorm的精度策略 `keep_batchnorm_fp32` 必须为bool类型通过 `kwargs` 设置 `loss_scale_manager` 可修改损失缩放策略,`loss_scale_manager` 必须为 :class:`mindspore.LossScaleManager` 的子类, 通过 `kwargs` 设置 `keep_batchnorm_fp32` 可修改BatchNorm的精度策略 `keep_batchnorm_fp32` 必须为bool类型通过 `kwargs` 设置 `loss_scale_manager` 可修改损失缩放策略,`loss_scale_manager` 必须为 :class:`mindspore.amp.LossScaleManager` 的子类,
关于 `amp_level` 详见 `mindpore.build_train_network` 关于 `amp_level` 详见 `mindpore.build_train_network`
- **boost_level** (str) - `mindspore.boost` 的可选参数为boost模式训练等级。支持["O0", "O1", "O2"]. 默认值:"O0"。 - **boost_level** (str) - `mindspore.boost` 的可选参数为boost模式训练等级。支持["O0", "O1", "O2"]. 默认值:"O0"。

View File

@ -1 +1 @@
- **loss_scale** (float) - 梯度缩放系数必须大于0。如果 `loss_scale` 是整数,它将被转换为浮点数。通常使用默认值,仅当训练时使用了 `FixedLossScaleManager`,且 `FixedLossScaleManager``drop_overflow_update` 属性配置为False时此值需要与 `FixedLossScaleManager` 中的 `loss_scale` 相同。有关更多详细信息,请参阅 :class:`mindspore.FixedLossScaleManager`。默认值1.0。 - **loss_scale** (float) - 梯度缩放系数必须大于0。如果 `loss_scale` 是整数,它将被转换为浮点数。通常使用默认值,仅当训练时使用了 `FixedLossScaleManager`,且 `FixedLossScaleManager``drop_overflow_update` 属性配置为False时此值需要与 `FixedLossScaleManager` 中的 `loss_scale` 相同。有关更多详细信息,请参阅 :class:`mindspore.amp.FixedLossScaleManager`。默认值1.0。

View File

@ -1,7 +1,7 @@
mindspore.ops.AlltoAll mindspore.ops.AlltoAll
====================== ======================
.. py:class:: mindspore.ops.AlltoAll(split_count, split_dim, concat_dim, group='hccl_world_group') .. py:class:: mindspore.ops.AlltoAll(split_count, split_dim, concat_dim, group=GlobalComm.WORLD_COMM_GROUP)
AlltoAll是一个集合通信函数。 AlltoAll是一个集合通信函数。

View File

@ -24,3 +24,4 @@ mindspore.ops.CropAndResize
异常: 异常:
- **TypeError** - 如果 `method` 不是str。 - **TypeError** - 如果 `method` 不是str。
- **TypeError** - 如果 `extrapolation_value` 不是float且取值不是"bilinear"、"nearest"或"bilinear_v2"。 - **TypeError** - 如果 `extrapolation_value` 不是float且取值不是"bilinear"、"nearest"或"bilinear_v2"。
- **ValueError** - 如果 `method` 不是'bilinear'、 'nearest'或者'bilinear_v2'。

View File

@ -12,7 +12,7 @@ mindspore.ops.SparseTensorDenseMatmul
输入: 输入:
- **indices** (Tensor) - 二维Tensor表示元素在稀疏Tensor中的位置。支持int32、int64每个元素值都应该是非负的。shape是 :math:`(n,2)` - **indices** (Tensor) - 二维Tensor表示元素在稀疏Tensor中的位置。支持int32、int64每个元素值都应该是非负的。shape是 :math:`(n,2)`
- **values** (Tensor) - 一维Tensor表示 `indices` 位置上对应的值。支持float16、float32、float64、int32、int64、complex64、complex128。shape应该是 :math:`(n,)` - **values** (Tensor) - 一维Tensor表示 `indices` 位置上对应的值。支持float16、float32、float64、int32、int64、complex64、complex128。shape应该是 :math:`(n,)`
- **sparse_shape** (tuple(int)) - 指定稀疏Tensor的shape由两个正整数组成表示稀疏Tensor的shape为 :math:`(N, C)` - **sparse_shape** (tuple(int) 或 Tensor) - 指定稀疏Tensor的shape由两个正整数组成表示稀疏Tensor的shape为 :math:`(N, C)`
- **dense** (Tensor) - 二维Tensor数据类型与 `values` 相同。 - **dense** (Tensor) - 二维Tensor数据类型与 `values` 相同。
如果 `adjoint_st` 为False `adjoint_dt` 为False则shape必须为 :math:`(C, M)` 如果 `adjoint_st` 为False `adjoint_dt` 为False则shape必须为 :math:`(C, M)`

View File

@ -1,7 +1,7 @@
mindspore.ops.count_nonzero mindspore.ops.count_nonzero
============================ ============================
.. py:function:: mindspore.ops.count_nonzero(x, axis=(), keep_dims=False, dtype=mindspore.int32) .. py:function:: mindspore.ops.count_nonzero(x, axis=(), keep_dims=False, dtype=mstype.int32)
计算输入Tensor指定轴上的非零元素的数量。 计算输入Tensor指定轴上的非零元素的数量。

View File

@ -1,7 +1,7 @@
mindspore.ops.custom_info_register mindspore.ops.custom_info_register
================================== ==================================
.. py:class:: mindspore.ops.custom_info_register(*reg_info) .. py:function:: mindspore.ops.custom_info_register(*reg_info)
装饰器,用于将注册信息绑定到: :class:`mindspore.ops.Custom``func` 参数。 装饰器,用于将注册信息绑定到: :class:`mindspore.ops.Custom``func` 参数。

View File

@ -131,7 +131,7 @@ class Adagrad(Optimizer):
loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value. loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value.
Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0. weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.

View File

@ -113,7 +113,7 @@ class Adadelta(Optimizer):
loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value. loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value.
Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0. weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.

View File

@ -232,7 +232,7 @@ class AdaFactor(Optimizer):
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the
default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
Inputs: Inputs:

View File

@ -441,7 +441,7 @@ class Adam(Optimizer):
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the
default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
Inputs: Inputs:
@ -902,7 +902,7 @@ class AdamOffload(Optimizer):
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the
default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
Inputs: Inputs:

View File

@ -136,7 +136,7 @@ class AdaMax(Optimizer):
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the
default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
Inputs: Inputs:

View File

@ -191,7 +191,7 @@ class FTRL(Optimizer):
loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value. loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value.
Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0. weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.

View File

@ -285,7 +285,7 @@ class LazyAdam(Optimizer):
loss_scale (float): A floating point value for the loss scale. Should be equal to or greater than 1. In general, loss_scale (float): A floating point value for the loss scale. Should be equal to or greater than 1. In general,
use the default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` use the default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update`
in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
Inputs: Inputs:

View File

@ -145,7 +145,7 @@ class Momentum(Optimizer):
loss_scale (float): A floating point value for the loss scale. It must be greater than 0.0. In general, use the loss_scale (float): A floating point value for the loss scale. It must be greater than 0.0. In general, use the
default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
use_nesterov (bool): Enable Nesterov momentum. Default: False. use_nesterov (bool): Enable Nesterov momentum. Default: False.

View File

@ -125,7 +125,7 @@ class Optimizer(Cell):
type of `loss_scale` input is int, it will be converted to float. In general, use the default value. Only type of `loss_scale` input is int, it will be converted to float. In general, use the default value. Only
when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
Raises: Raises:

View File

@ -131,7 +131,7 @@ class ProximalAdagrad(Optimizer):
loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value. loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general, use the default value.
Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0. weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.

View File

@ -145,7 +145,7 @@ class RMSProp(Optimizer):
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general, use the
default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0. weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: 0.0.

View File

@ -110,7 +110,7 @@ class SGD(Optimizer):
loss_scale (float): A floating point value for the loss scale, which must be larger than 0.0. In general, use loss_scale (float): A floating point value for the loss scale, which must be larger than 0.0. In general, use
the default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in the default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
`FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in `FixedLossScaleManager` is set to False, then this value needs to be the same as the `loss_scale` in
`FixedLossScaleManager`. Refer to class :class:`mindspore.FixedLossScaleManager` for more details. `FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
Default: 1.0. Default: 1.0.
Inputs: Inputs:

View File

@ -349,7 +349,7 @@ def multinomial(inputs, num_sample, replacement=True, seed=None):
seed (int, optional): Seed is used as entropy source for the random number engines to generate seed (int, optional): Seed is used as entropy source for the random number engines to generate
pseudo-random numbers, must be non-negative. Default: None. pseudo-random numbers, must be non-negative. Default: None.
Outputs: Returns:
Tensor, has the same rows with input. The number of sampled indices of each row is `num_samples`. Tensor, has the same rows with input. The number of sampled indices of each row is `num_samples`.
The dtype is float32. The dtype is float32.

View File

@ -6895,7 +6895,7 @@ class ExtractVolumePatches(Primitive):
Supported Platforms: Supported Platforms:
``Ascend`` ``CPU`` ``Ascend`` ``CPU``
Example: Examples:
>>> kernel_size = (1, 1, 2, 2, 2) >>> kernel_size = (1, 1, 2, 2, 2)
>>> strides = (1, 1, 1, 1, 1) >>> strides = (1, 1, 1, 1, 1)
>>> padding = "VALID" >>> padding = "VALID"

View File

@ -686,7 +686,7 @@ class NeighborExchange(Primitive):
Supported Platforms: Supported Platforms:
``Ascend`` ``Ascend``
Example: Examples:
>>> # This example should be run with 2 devices. Refer to the tutorial > Distributed Training on mindspore.cn >>> # This example should be run with 2 devices. Refer to the tutorial > Distributed Training on mindspore.cn
>>> import os >>> import os
>>> import mindspore as ms >>> import mindspore as ms
@ -762,7 +762,7 @@ class AlltoAll(PrimitiveWithInfer):
Supported Platforms: Supported Platforms:
``Ascend`` ``Ascend``
Example: Examples:
>>> # This example should be run with 8 devices. Refer to the tutorial > Distributed Training on mindspore.cn >>> # This example should be run with 8 devices. Refer to the tutorial > Distributed Training on mindspore.cn
>>> import os >>> import os
>>> import mindspore as ms >>> import mindspore as ms

View File

@ -2092,7 +2092,6 @@ class Sqrt(Primitive):
out_{i} = \sqrt{x_{i}} out_{i} = \sqrt{x_{i}}
Inputs: Inputs:
- **x** (Tensor) - The input tensor with a dtype of Number, its rank must be in [0, 7] inclusive. - **x** (Tensor) - The input tensor with a dtype of Number, its rank must be in [0, 7] inclusive.

View File

@ -623,7 +623,7 @@ class SparseTensorDenseMatmul(Primitive):
Support int32, int64, each element value should be a non-negative int number. The shape is :math:`(n, 2)`. Support int32, int64, each element value should be a non-negative int number. The shape is :math:`(n, 2)`.
- **values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`. - **values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`.
Support float16, float32, float64, int32, int64, complex64, complex128. The shape should be :math:`(n,)`. Support float16, float32, float64, int32, int64, complex64, complex128. The shape should be :math:`(n,)`.
- **sparse_shape** (tuple(int)) or (Tensor) - A positive int tuple or tensor which specifies the shape of - **sparse_shape** (tuple(int) or (Tensor)) - A positive int tuple or tensor which specifies the shape of
sparse tensor, and only constant value is allowed when sparse_shape is a tensor, should have 2 elements, sparse tensor, and only constant value is allowed when sparse_shape is a tensor, should have 2 elements,
represent sparse tensor shape is :math:`(N, C)`. represent sparse tensor shape is :math:`(N, C)`.
- **dense** (Tensor) - A 2-D Tensor, the dtype is same as `values`. - **dense** (Tensor) - A 2-D Tensor, the dtype is same as `values`.

View File

@ -281,8 +281,8 @@ def build_train_network(network, optimizer, loss_fn=None, level='O0', boost_leve
keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32` when the network is set to cast to `float16` . If keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32` when the network is set to cast to `float16` . If
set, the `level` setting will take no effect on this property. set, the `level` setting will take no effect on this property.
loss_scale_manager (Union[None, LossScaleManager]): If not None, must be subclass of loss_scale_manager (Union[None, LossScaleManager]): If not None, must be subclass of
:class:`mindspore.LossScaleManager` for scaling the loss. If set, the `level` setting will take no effect :class:`mindspore.amp.LossScaleManager` for scaling the loss. If set, the `level` setting will
on this property. take no effect on this property.
Raises: Raises:
ValueError: If device is CPU, property `loss_scale_manager` is not `None` or `FixedLossScaleManager` ValueError: If device is CPU, property `loss_scale_manager` is not `None` or `FixedLossScaleManager`

View File

@ -29,7 +29,7 @@ class LossScaleManager:
`get_update_cell` is used to get the instance of :class:`mindspore.nn.Cell` that is used to update the loss scale, `get_update_cell` is used to get the instance of :class:`mindspore.nn.Cell` that is used to update the loss scale,
the instance will be called during the training. Currently, the `get_update_cell` is mostly used. the instance will be called during the training. Currently, the `get_update_cell` is mostly used.
For example, :class:`mindspore.FixedLossScaleManager` and :class:`mindspore.DynamicLossScaleManager`. For example, :class:`mindspore.amp.FixedLossScaleManager` and :class:`mindspore.amp.DynamicLossScaleManager`.
""" """
def get_loss_scale(self): def get_loss_scale(self):
"""Get the value of loss scale, which is the amplification factor of the gradients.""" """Get the value of loss scale, which is the amplification factor of the gradients."""

View File

@ -140,7 +140,7 @@ class Model:
"O2" is recommended on GPU, "O3" is recommended on Ascend. "O2" is recommended on GPU, "O3" is recommended on Ascend.
The BatchNorm strategy can be changed by `keep_batchnorm_fp32` settings in `kwargs`. `keep_batchnorm_fp32` The BatchNorm strategy can be changed by `keep_batchnorm_fp32` settings in `kwargs`. `keep_batchnorm_fp32`
must be a bool. The loss scale strategy can be changed by `loss_scale_manager` setting in `kwargs`. must be a bool. The loss scale strategy can be changed by `loss_scale_manager` setting in `kwargs`.
`loss_scale_manager` should be a subclass of :class:`mindspore.LossScaleManager`. `loss_scale_manager` should be a subclass of :class:`mindspore.amp.LossScaleManager`.
The more detailed explanation of `amp_level` setting can be found at `mindspore.build_train_network`. The more detailed explanation of `amp_level` setting can be found at `mindspore.build_train_network`.
boost_level (str): Option for argument `level` in `mindspore.boost`, level for boost mode boost_level (str): Option for argument `level` in `mindspore.boost`, level for boost mode