forked from mindspore-Ecosystem/mindspore
fix weight_init bug
This commit is contained in:
parent
bd8cf0c14f
commit
5010956773
|
@ -20,7 +20,7 @@ from mindspore import context
|
|||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.primitive import constexpr
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.initializer import initializer, Initializer
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore._checkparam import ParamValidator as validator, Rel
|
||||
from mindspore._checkparam import Validator
|
||||
|
@ -251,6 +251,10 @@ class Conv2d(_Conv):
|
|||
stride=self.stride,
|
||||
dilation=self.dilation)
|
||||
weight_shape = [1, self.in_channels, *self.kernel_size]
|
||||
if isinstance(self.weight_init, Tensor):
|
||||
self.weight_init = Tensor(self.weight_init.asnumpy().swapaxes(0, 1), self.weight_init.dtype)
|
||||
if isinstance(self.weight_init, Initializer):
|
||||
self.weight_init.shape = weight_shape
|
||||
self.weight = Parameter(initializer(self.weight_init, weight_shape), name='weight')
|
||||
|
||||
def construct(self, x):
|
||||
|
|
|
@ -0,0 +1,59 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.common.initializer import Normal
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_conv2d_depthwiseconv2d_str():
|
||||
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
|
||||
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
|
||||
output = net(input_data)
|
||||
assert output.shape == (3, 128, 32, 28)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_conv2d_depthwiseconv2d_initializer():
|
||||
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
|
||||
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
|
||||
output = net(input_data)
|
||||
assert output.shape == (3, 128, 32, 28)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_conv2d_depthwiseconv2d_tensor():
|
||||
weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
|
||||
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
|
||||
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
|
||||
output = net(input_data)
|
||||
assert output.shape == (3, 128, 32, 28)
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.common.initializer import Normal
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_conv2d_depthwiseconv2d_str():
|
||||
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
|
||||
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
|
||||
output = net(input_data)
|
||||
assert output.shape == (3, 128, 32, 28)
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_conv2d_depthwiseconv2d_initializer():
|
||||
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
|
||||
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
|
||||
output = net(input_data)
|
||||
assert output.shape == (3, 128, 32, 28)
|
||||
|
||||
|
||||
@pytest.mark.level1
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_conv2d_depthwiseconv2d_tensor():
|
||||
weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
|
||||
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
|
||||
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
|
||||
output = net(input_data)
|
||||
assert output.shape == (3, 128, 32, 28)
|
Loading…
Reference in New Issue