fix weight_init bug

This commit is contained in:
caozhou 2020-09-16 18:55:15 +08:00
parent bd8cf0c14f
commit 5010956773
3 changed files with 120 additions and 1 deletions

View File

@ -20,7 +20,7 @@ from mindspore import context
from mindspore.ops import operations as P
from mindspore.ops.primitive import constexpr
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
from mindspore.common.initializer import initializer, Initializer
from mindspore.common.tensor import Tensor
from mindspore._checkparam import ParamValidator as validator, Rel
from mindspore._checkparam import Validator
@ -251,6 +251,10 @@ class Conv2d(_Conv):
stride=self.stride,
dilation=self.dilation)
weight_shape = [1, self.in_channels, *self.kernel_size]
if isinstance(self.weight_init, Tensor):
self.weight_init = Tensor(self.weight_init.asnumpy().swapaxes(0, 1), self.weight_init.dtype)
if isinstance(self.weight_init, Initializer):
self.weight_init.shape = weight_shape
self.weight = Parameter(initializer(self.weight_init, weight_shape), name='weight')
def construct(self, x):

View File

@ -0,0 +1,59 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore.common.initializer import Normal
from mindspore import Tensor
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_str():
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_initializer():
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)
@pytest.mark.level0
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_tensor():
weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)

View File

@ -0,0 +1,56 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.nn as nn
import mindspore.common.dtype as mstype
from mindspore.common.initializer import Normal
from mindspore import Tensor
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_str():
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_initializer():
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_conv2d_depthwiseconv2d_tensor():
weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
output = net(input_data)
assert output.shape == (3, 128, 32, 28)