!16386 Support GPU ApplyGradientDescent

From: @TFbunny
Reviewed-by: @robingrosman,@tom__chen
Signed-off-by: @robingrosman
This commit is contained in:
mindspore-ci-bot 2021-05-15 04:42:37 +08:00 committed by Gitee
commit 4cda727e02
7 changed files with 281 additions and 3 deletions

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/cuda_impl/apply_gradient_descent_impl.cuh"
template <typename T>
__global__ void ApplyGradientDescent(const size_t size, T *var, const T *alpha, const T *delta, T *output) {
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
const T alpha_value = alpha[0];
var[pos] -= alpha_value * delta[pos];
output[pos] = var[pos];
}
}
template <typename T>
void CalApplyGradientDescent(const size_t &size, T *var, const T *alpha, const T *delta, T *output,
cudaStream_t cuda_stream) {
ApplyGradientDescent<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, var, alpha, delta, output);
}
template void CalApplyGradientDescent<float>(const size_t &size, float *var, const float *alpha, const float *delta,
float *output, cudaStream_t cuda_stream);
template void CalApplyGradientDescent<half>(const size_t &size, half *var, const half *alpha, const half *delta,
half *output, cudaStream_t cuda_stream);

View File

@ -0,0 +1,27 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_APPLY_GRADIENT_DESCENT_IMPL_CUH_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_APPLY_GRADIENT_DESCENT_IMPL_CUH_
#include <cuda_runtime.h>
#include "runtime/device/gpu/cuda_common.h"
template <typename T>
void CalApplyGradientDescent(const size_t &size, T *var, const T *alpha, const T *delta, T *output,
cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_APPLY_GRADIENT_DESCENT_IMPL_CUH_

View File

@ -0,0 +1,36 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nn/apply_gradient_descent_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(ApplyGradientDescent,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
ApplyGradientDescentKernel, float)
MS_REG_GPU_KERNEL_ONE(ApplyGradientDescent,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
ApplyGradientDescentKernel, half)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,92 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_APPLY_GRADIENT_DESCENT_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_APPLY_GRADIENT_DESCENT_GPU_KERNEL_H_
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/cuda_impl/apply_gradient_descent_impl.cuh"
namespace mindspore {
namespace kernel {
template <typename T>
class ApplyGradientDescentKernel : public GpuKernel {
public:
ApplyGradientDescentKernel() { ResetResource(); }
~ApplyGradientDescentKernel() override = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
VARIABLE_NOT_USED(workspace);
T *var = GetDeviceAddress<T>(inputs, 0);
T *alpha = GetDeviceAddress<T>(inputs, 1);
T *delta = GetDeviceAddress<T>(inputs, 2);
T *output = GetDeviceAddress<T>(outputs, 0);
CalApplyGradientDescent(input_size_, var, alpha, delta, output, reinterpret_cast<cudaStream_t>(stream_ptr));
return true;
}
bool Init(const CNodePtr &kernel_node) override {
kernel_node_ = kernel_node;
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 3) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but ApplyGradientDescent needs 3 inputs.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but ApplyGradientDescent has 1 output.";
return false;
}
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
input_size_ = 1;
for (size_t i = 0; i < input_shape.size(); i++) {
input_size_ *= input_shape[i];
}
InitSizeLists();
return true;
}
void ResetResource() noexcept override {
input_size_ = 1;
input_size_list_.clear();
output_size_list_.clear();
workspace_size_list_.clear();
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_ * sizeof(T));
input_size_list_.push_back(sizeof(T));
input_size_list_.push_back(input_size_ * sizeof(T));
output_size_list_.push_back(input_size_ * sizeof(T));
}
private:
size_t input_size_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_APPLY_GRADIENT_DESCENT_GPU_KERNEL_H_

View File

@ -998,7 +998,7 @@ class BCEWithLogitsLoss(_Loss):
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
Supported Platforms: Supported Platforms:
``Ascend`` ``Ascend`` ``GPU``
Examples: Examples:
>>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) >>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))

View File

@ -3832,7 +3832,7 @@ class BCEWithLogitsLoss(PrimitiveWithInfer):
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'. ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
Supported Platforms: Supported Platforms:
``Ascend`` ``Ascend`` ``GPU``
Examples: Examples:
>>> predict = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32)) >>> predict = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))
@ -6285,7 +6285,7 @@ class ApplyGradientDescent(PrimitiveWithInfer):
TypeError: If `alpha` is neither a Number nor a Tensor. TypeError: If `alpha` is neither a Number nor a Tensor.
Supported Platforms: Supported Platforms:
``Ascend`` ``Ascend`` ``GPU``
Examples: Examples:
>>> import numpy as np >>> import numpy as np

View File

@ -0,0 +1,86 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, Parameter
from mindspore.ops import operations as P
class Net(nn.Cell):
def __init__(self, var):
super(Net, self).__init__()
self.var = Parameter(var, name="var")
self.apply_gradient_descent = P.ApplyGradientDescent()
def construct(self, alpha, delta):
return self.apply_gradient_descent(self.var, alpha, delta)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_apply_gradient_descent_float32():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
var = Tensor(np.arange(10).reshape(2, 5).astype(np.float32) / 10)
net = Net(var)
alpha = Tensor(np.array([0.0001]).astype(np.float32))
delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float32))
output = net(alpha, delta)
expect = np.array([[-0.0034, 0.0965, 0.1964, 0.29630002, 0.3962],
[0.4961, 0.596, 0.69589996, 0.79580003, 0.8957]], dtype=np.float32)
np.testing.assert_almost_equal(output.asnumpy(), expect)
np.testing.assert_almost_equal(net.var.asnumpy(), expect)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
var = Tensor(np.arange(10).reshape(2, 5).astype(np.float32) / 10)
net = Net(var)
alpha = Tensor(np.array([0.0001]).astype(np.float32))
delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float32))
output = net(alpha, delta)
expect = np.array([[-0.0034, 0.0965, 0.1964, 0.29630002, 0.3962],
[0.4961, 0.596, 0.69589996, 0.79580003, 0.8957]], dtype=np.float32)
np.testing.assert_almost_equal(output.asnumpy(), expect)
np.testing.assert_almost_equal(net.var.asnumpy(), expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_apply_gradient_descent_float16():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
var = Tensor(np.arange(10).reshape(2, 5).astype(np.float16) / 10)
net = Net(var)
alpha = Tensor(np.array([0.0001]).astype(np.float16))
delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float16))
output = net(alpha, delta)
expect = np.array([[-0.0034, 0.0965, 0.1964, 0.29630002, 0.3962],
[0.4961, 0.596, 0.69589996, 0.79580003, 0.8957]], dtype=np.float16)
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=3)
np.testing.assert_almost_equal(net.var.asnumpy(), expect, decimal=3)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
var = Tensor(np.arange(10).reshape(2, 5).astype(np.float16) / 10)
net = Net(var)
alpha = Tensor(np.array([0.0001]).astype(np.float16))
delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float16))
output = net(alpha, delta)
expect = np.array([[-0.0034, 0.0965, 0.1964, 0.2964, 0.396],
[0.496, 0.596, 0.6963, 0.7954, 0.8955]], dtype=np.float16)
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=3)
np.testing.assert_almost_equal(net.var.asnumpy(), expect, decimal=3)