forked from mindspore-Ecosystem/mindspore
!16386 Support GPU ApplyGradientDescent
From: @TFbunny Reviewed-by: @robingrosman,@tom__chen Signed-off-by: @robingrosman
This commit is contained in:
commit
4cda727e02
|
@ -0,0 +1,37 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "backend/kernel_compiler/gpu/cuda_impl/apply_gradient_descent_impl.cuh"
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
__global__ void ApplyGradientDescent(const size_t size, T *var, const T *alpha, const T *delta, T *output) {
|
||||||
|
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
|
||||||
|
const T alpha_value = alpha[0];
|
||||||
|
var[pos] -= alpha_value * delta[pos];
|
||||||
|
output[pos] = var[pos];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void CalApplyGradientDescent(const size_t &size, T *var, const T *alpha, const T *delta, T *output,
|
||||||
|
cudaStream_t cuda_stream) {
|
||||||
|
ApplyGradientDescent<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, var, alpha, delta, output);
|
||||||
|
}
|
||||||
|
|
||||||
|
template void CalApplyGradientDescent<float>(const size_t &size, float *var, const float *alpha, const float *delta,
|
||||||
|
float *output, cudaStream_t cuda_stream);
|
||||||
|
template void CalApplyGradientDescent<half>(const size_t &size, half *var, const half *alpha, const half *delta,
|
||||||
|
half *output, cudaStream_t cuda_stream);
|
|
@ -0,0 +1,27 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_APPLY_GRADIENT_DESCENT_IMPL_CUH_
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_APPLY_GRADIENT_DESCENT_IMPL_CUH_
|
||||||
|
|
||||||
|
#include <cuda_runtime.h>
|
||||||
|
#include "runtime/device/gpu/cuda_common.h"
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void CalApplyGradientDescent(const size_t &size, T *var, const T *alpha, const T *delta, T *output,
|
||||||
|
cudaStream_t cuda_stream);
|
||||||
|
|
||||||
|
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUDA_IMPL_APPLY_GRADIENT_DESCENT_IMPL_CUH_
|
|
@ -0,0 +1,36 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "backend/kernel_compiler/gpu/nn/apply_gradient_descent_gpu_kernel.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
MS_REG_GPU_KERNEL_ONE(ApplyGradientDescent,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddInputAttr(kNumberTypeFloat32)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat32),
|
||||||
|
ApplyGradientDescentKernel, float)
|
||||||
|
MS_REG_GPU_KERNEL_ONE(ApplyGradientDescent,
|
||||||
|
KernelAttr()
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddInputAttr(kNumberTypeFloat16)
|
||||||
|
.AddOutputAttr(kNumberTypeFloat16),
|
||||||
|
ApplyGradientDescentKernel, half)
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
|
@ -0,0 +1,92 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_APPLY_GRADIENT_DESCENT_GPU_KERNEL_H_
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_APPLY_GRADIENT_DESCENT_GPU_KERNEL_H_
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||||
|
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||||
|
#include "backend/kernel_compiler/gpu/cuda_impl/apply_gradient_descent_impl.cuh"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
template <typename T>
|
||||||
|
class ApplyGradientDescentKernel : public GpuKernel {
|
||||||
|
public:
|
||||||
|
ApplyGradientDescentKernel() { ResetResource(); }
|
||||||
|
~ApplyGradientDescentKernel() override = default;
|
||||||
|
|
||||||
|
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||||
|
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||||
|
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||||
|
|
||||||
|
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||||
|
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||||
|
VARIABLE_NOT_USED(workspace);
|
||||||
|
T *var = GetDeviceAddress<T>(inputs, 0);
|
||||||
|
T *alpha = GetDeviceAddress<T>(inputs, 1);
|
||||||
|
T *delta = GetDeviceAddress<T>(inputs, 2);
|
||||||
|
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||||
|
CalApplyGradientDescent(input_size_, var, alpha, delta, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool Init(const CNodePtr &kernel_node) override {
|
||||||
|
kernel_node_ = kernel_node;
|
||||||
|
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||||
|
if (input_num != 3) {
|
||||||
|
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but ApplyGradientDescent needs 3 inputs.";
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||||
|
if (output_num != 1) {
|
||||||
|
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but ApplyGradientDescent has 1 output.";
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||||
|
input_size_ = 1;
|
||||||
|
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||||
|
input_size_ *= input_shape[i];
|
||||||
|
}
|
||||||
|
InitSizeLists();
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ResetResource() noexcept override {
|
||||||
|
input_size_ = 1;
|
||||||
|
input_size_list_.clear();
|
||||||
|
output_size_list_.clear();
|
||||||
|
workspace_size_list_.clear();
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InitSizeLists() override {
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
input_size_list_.push_back(sizeof(T));
|
||||||
|
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
output_size_list_.push_back(input_size_ * sizeof(T));
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
size_t input_size_;
|
||||||
|
std::vector<size_t> input_size_list_;
|
||||||
|
std::vector<size_t> output_size_list_;
|
||||||
|
std::vector<size_t> workspace_size_list_;
|
||||||
|
};
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_APPLY_GRADIENT_DESCENT_GPU_KERNEL_H_
|
|
@ -998,7 +998,7 @@ class BCEWithLogitsLoss(_Loss):
|
||||||
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
|
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend``
|
``Ascend`` ``GPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))
|
>>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))
|
||||||
|
|
|
@ -3832,7 +3832,7 @@ class BCEWithLogitsLoss(PrimitiveWithInfer):
|
||||||
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
|
ValueError: If `reduction` is not one of 'none', 'mean', 'sum'.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend``
|
``Ascend`` ``GPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> predict = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))
|
>>> predict = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))
|
||||||
|
@ -6285,7 +6285,7 @@ class ApplyGradientDescent(PrimitiveWithInfer):
|
||||||
TypeError: If `alpha` is neither a Number nor a Tensor.
|
TypeError: If `alpha` is neither a Number nor a Tensor.
|
||||||
|
|
||||||
Supported Platforms:
|
Supported Platforms:
|
||||||
``Ascend``
|
``Ascend`` ``GPU``
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> import numpy as np
|
>>> import numpy as np
|
||||||
|
|
|
@ -0,0 +1,86 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor, Parameter
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self, var):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.var = Parameter(var, name="var")
|
||||||
|
self.apply_gradient_descent = P.ApplyGradientDescent()
|
||||||
|
|
||||||
|
def construct(self, alpha, delta):
|
||||||
|
return self.apply_gradient_descent(self.var, alpha, delta)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_apply_gradient_descent_float32():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||||
|
var = Tensor(np.arange(10).reshape(2, 5).astype(np.float32) / 10)
|
||||||
|
net = Net(var)
|
||||||
|
alpha = Tensor(np.array([0.0001]).astype(np.float32))
|
||||||
|
delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float32))
|
||||||
|
output = net(alpha, delta)
|
||||||
|
expect = np.array([[-0.0034, 0.0965, 0.1964, 0.29630002, 0.3962],
|
||||||
|
[0.4961, 0.596, 0.69589996, 0.79580003, 0.8957]], dtype=np.float32)
|
||||||
|
np.testing.assert_almost_equal(output.asnumpy(), expect)
|
||||||
|
np.testing.assert_almost_equal(net.var.asnumpy(), expect)
|
||||||
|
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||||
|
var = Tensor(np.arange(10).reshape(2, 5).astype(np.float32) / 10)
|
||||||
|
net = Net(var)
|
||||||
|
alpha = Tensor(np.array([0.0001]).astype(np.float32))
|
||||||
|
delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float32))
|
||||||
|
output = net(alpha, delta)
|
||||||
|
expect = np.array([[-0.0034, 0.0965, 0.1964, 0.29630002, 0.3962],
|
||||||
|
[0.4961, 0.596, 0.69589996, 0.79580003, 0.8957]], dtype=np.float32)
|
||||||
|
np.testing.assert_almost_equal(output.asnumpy(), expect)
|
||||||
|
np.testing.assert_almost_equal(net.var.asnumpy(), expect)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_apply_gradient_descent_float16():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||||
|
var = Tensor(np.arange(10).reshape(2, 5).astype(np.float16) / 10)
|
||||||
|
net = Net(var)
|
||||||
|
alpha = Tensor(np.array([0.0001]).astype(np.float16))
|
||||||
|
delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float16))
|
||||||
|
output = net(alpha, delta)
|
||||||
|
expect = np.array([[-0.0034, 0.0965, 0.1964, 0.29630002, 0.3962],
|
||||||
|
[0.4961, 0.596, 0.69589996, 0.79580003, 0.8957]], dtype=np.float16)
|
||||||
|
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=3)
|
||||||
|
np.testing.assert_almost_equal(net.var.asnumpy(), expect, decimal=3)
|
||||||
|
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||||
|
var = Tensor(np.arange(10).reshape(2, 5).astype(np.float16) / 10)
|
||||||
|
net = Net(var)
|
||||||
|
alpha = Tensor(np.array([0.0001]).astype(np.float16))
|
||||||
|
delta = Tensor(np.arange(34, 44).reshape(2, 5).astype(np.float16))
|
||||||
|
output = net(alpha, delta)
|
||||||
|
expect = np.array([[-0.0034, 0.0965, 0.1964, 0.2964, 0.396],
|
||||||
|
[0.496, 0.596, 0.6963, 0.7954, 0.8955]], dtype=np.float16)
|
||||||
|
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=3)
|
||||||
|
np.testing.assert_almost_equal(net.var.asnumpy(), expect, decimal=3)
|
Loading…
Reference in New Issue