forked from mindspore-Ecosystem/mindspore
refactor processor setting
This commit is contained in:
parent
8d42a57093
commit
4af448bdd3
|
@ -44,7 +44,7 @@ std::vector<std::string> AkgKernelBuilder::GetNotCachedKernelJsons(const std::ve
|
|||
auto kernel_name = json_generator.kernel_name();
|
||||
MS_LOG(DEBUG) << "Akg start compile op: " << kernel_name;
|
||||
|
||||
auto cached_kernel_pack = AkgSearchCache(kernel_name, GetProcessorStr(anf_node));
|
||||
auto cached_kernel_pack = AkgSearchCache(kernel_name);
|
||||
if (cached_kernel_pack != nullptr) {
|
||||
MS_LOG(DEBUG) << "Use cached kernel, kernel_name[" << kernel_name << "], fullname_with_scope["
|
||||
<< anf_node->fullname_with_scope() << "].";
|
||||
|
@ -67,7 +67,7 @@ std::vector<std::string> AkgKernelBuilder::GetNotCachedKernelJsons(const std::ve
|
|||
bool AkgKernelBuilder::InsertToCache(const std::vector<JsonNodePair> &build_args) {
|
||||
for (const auto &[json_generator, anf_node] : build_args) {
|
||||
auto kernel_name = json_generator.kernel_name();
|
||||
auto new_kernel_pack = AkgInsertCache(kernel_name, GetProcessorStr(anf_node));
|
||||
auto new_kernel_pack = AkgInsertCache(kernel_name);
|
||||
if (new_kernel_pack == nullptr) {
|
||||
MS_LOG(ERROR) << "Insert to cache failed, kernel_name[" << kernel_name << "], fullname_with_scope["
|
||||
<< anf_node->fullname_with_scope() << "].";
|
||||
|
@ -82,7 +82,7 @@ bool AkgKernelBuilder::InsertToCache(const std::vector<JsonNodePair> &build_args
|
|||
bool AkgKernelBuilder::HandleRepeatNodes() {
|
||||
for (const auto &[json_generator, anf_node] : repeat_nodes_) {
|
||||
auto kernel_name = json_generator.kernel_name();
|
||||
auto cached_kernel_pack = AkgSearchCache(kernel_name, GetProcessorStr(anf_node));
|
||||
auto cached_kernel_pack = AkgSearchCache(kernel_name);
|
||||
if (cached_kernel_pack == nullptr) {
|
||||
MS_LOG(ERROR) << "Use cached kernel failed, kernel_name[" << kernel_name << "], fullname_with_scope["
|
||||
<< anf_node->fullname_with_scope() << "].";
|
||||
|
|
|
@ -36,8 +36,8 @@ class AkgKernelBuilder {
|
|||
~AkgKernelBuilder() = default;
|
||||
|
||||
virtual KernelBuildClient *GetClient() = 0;
|
||||
virtual KernelPackPtr AkgSearchCache(const std::string &kernel_name, const std::string &processor) = 0;
|
||||
virtual KernelPackPtr AkgInsertCache(const std::string &kernel_name, const std::string &processor) = 0;
|
||||
virtual KernelPackPtr AkgSearchCache(const std::string &kernel_name) = 0;
|
||||
virtual KernelPackPtr AkgInsertCache(const std::string &kernel_name) = 0;
|
||||
virtual void AkgSetKernelMod(const KernelPackPtr &kernel_pack, const AkgKernelJsonGenerator &json_generator,
|
||||
const AnfNodePtr &anf_node) = 0;
|
||||
virtual void AkgSaveJsonInfo(const string &kernel_name, const string &kernel_json) = 0;
|
||||
|
|
|
@ -544,7 +544,7 @@ bool AkgKernelJsonGenerator::CollectJson(const AnfNodePtr &anf_node, nlohmann::j
|
|||
(*kernel_json)[kJsonKeyId] = GetOpCntInc();
|
||||
(*kernel_json)[kJsonKeyOp] = kernel_name_;
|
||||
(*kernel_json)[kJsonKeyPlatform] = "AKG";
|
||||
(*kernel_json)[kJsonKeyProcess] = GetProcessorStr(anf_node);
|
||||
(*kernel_json)[kJsonKeyProcess] = GetStrProcessorFromContext(); // GetProcessorStr(anf_node);
|
||||
(*kernel_json)[kJsonKeyComposite] = false;
|
||||
|
||||
if (!GetIOSize(*kernel_json, &input_size_list_, &output_size_list_)) {
|
||||
|
@ -632,7 +632,7 @@ bool AkgKernelJsonGenerator::CollectFusedJson(const std::vector<AnfNodePtr> &anf
|
|||
(*kernel_json)[kJsonKeyId] = GetOpCntInc();
|
||||
(*kernel_json)[kJsonKeyOp] = kernel_name_;
|
||||
(*kernel_json)[kJsonKeyPlatform] = "AKG";
|
||||
(*kernel_json)[kJsonKeyProcess] = GetProcessorStr(anf_nodes[0]);
|
||||
(*kernel_json)[kJsonKeyProcess] = GetStrProcessorFromContext();
|
||||
(*kernel_json)[kJsonKeyComposite] = true;
|
||||
(*kernel_json)[kJsonKeyCompositeGraph] = fg->ToString() + "." + fg->debug_info()->get_id();
|
||||
|
||||
|
@ -765,7 +765,7 @@ void AkgKernelJsonGenerator::GenParallelJson(const std::vector<AnfNodePtr> &anf_
|
|||
}
|
||||
|
||||
if (!sub_graphs_info.empty()) {
|
||||
auto processor = GetProcessorStr(anf_nodes[0]);
|
||||
auto processor = GetStrProcessorFromContext(); // GetProcessorStr(anf_nodes[0]);
|
||||
if (processor != kProcessorCuda) {
|
||||
MS_LOG(EXCEPTION) << "Parallel fusion not support " << processor << " now.";
|
||||
}
|
||||
|
|
|
@ -33,12 +33,12 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
KernelPackPtr AkgAscendKernelBuilder::AkgSearchCache(const std::string &kernel_name, const std::string &processor) {
|
||||
return tbe::TbeUtils::SearchCache(kernel_name, processor);
|
||||
KernelPackPtr AkgAscendKernelBuilder::AkgSearchCache(const std::string &kernel_name) {
|
||||
return tbe::TbeUtils::SearchCache(kernel_name, kProcessorAiCore);
|
||||
}
|
||||
|
||||
KernelPackPtr AkgAscendKernelBuilder::AkgInsertCache(const std::string &kernel_name, const std::string &processor) {
|
||||
return tbe::TbeUtils::InsertCache(kernel_name, processor);
|
||||
KernelPackPtr AkgAscendKernelBuilder::AkgInsertCache(const std::string &kernel_name) {
|
||||
return tbe::TbeUtils::InsertCache(kernel_name, kProcessorAiCore);
|
||||
}
|
||||
|
||||
void AkgAscendKernelBuilder::AkgSetKernelMod(const KernelPackPtr &kernel_pack,
|
||||
|
|
|
@ -32,8 +32,8 @@ class AkgAscendKernelBuilder : public AkgKernelBuilder {
|
|||
~AkgAscendKernelBuilder() = default;
|
||||
|
||||
kernel::KernelBuildClient *GetClient() override { return &(kernel::AscendKernelBuildClient::Instance()); }
|
||||
KernelPackPtr AkgSearchCache(const std::string &kernel_name, const std::string &processor) override;
|
||||
KernelPackPtr AkgInsertCache(const std::string &kernel_name, const std::string &processor) override;
|
||||
KernelPackPtr AkgSearchCache(const std::string &kernel_name) override;
|
||||
KernelPackPtr AkgInsertCache(const std::string &kernel_name) override;
|
||||
void AkgSetKernelMod(const KernelPackPtr &kernel_pack, const AkgKernelJsonGenerator &json_generator,
|
||||
const AnfNodePtr &anf_node) override;
|
||||
void AkgSaveJsonInfo(const string &kernel_name, const string &kernel_json) override;
|
||||
|
|
|
@ -29,12 +29,12 @@ namespace kernel {
|
|||
constexpr int32_t ARGS_SIZE = 1;
|
||||
constexpr auto kCompileWithJsonFunc = "compilewithjson";
|
||||
|
||||
KernelPackPtr AkgGpuKernelBuilder::AkgSearchCache(const std::string &kernel_name, const std::string &processor) {
|
||||
return SearchCache(kernel_name, processor);
|
||||
KernelPackPtr AkgGpuKernelBuilder::AkgSearchCache(const std::string &kernel_name) {
|
||||
return SearchCache(kernel_name, kProcessorCuda);
|
||||
}
|
||||
|
||||
KernelPackPtr AkgGpuKernelBuilder::AkgInsertCache(const std::string &kernel_name, const std::string &processor) {
|
||||
return InsertCache(kernel_name, processor);
|
||||
KernelPackPtr AkgGpuKernelBuilder::AkgInsertCache(const std::string &kernel_name) {
|
||||
return InsertCache(kernel_name, kProcessorCuda);
|
||||
}
|
||||
|
||||
void AkgGpuKernelBuilder::AkgSetKernelMod(const KernelPackPtr &kernel_pack,
|
||||
|
@ -49,99 +49,5 @@ void AkgGpuKernelBuilder::AkgSaveJsonInfo(const string &kernel_name, const strin
|
|||
kernel::SaveJsonInfo(kernel_name, kernel_json, kernel::KernelMeta::GetInstance()->kernel_meta_path());
|
||||
}
|
||||
|
||||
KernelPackPtr AkgGpuKernelBuilder::OpBuild(const AkgKernelJsonGenerator &json_generator, const AnfNodePtr &anf_node) {
|
||||
MS_EXCEPTION_IF_NULL(anf_node);
|
||||
auto processor = GetProcessorStr(anf_node);
|
||||
auto kernel_name = json_generator.kernel_name();
|
||||
auto cached_kernel_pack = SearchCache(kernel_name, processor);
|
||||
if (cached_kernel_pack != nullptr) {
|
||||
MS_LOG(INFO) << "Use cached kernel, kernel_name[" << kernel_name << "], fullname_with_scope["
|
||||
<< anf_node->fullname_with_scope() << "].";
|
||||
return cached_kernel_pack;
|
||||
}
|
||||
|
||||
auto kernel_json = json_generator.kernel_json_str();
|
||||
kernel::SaveJsonInfo(kernel_name, kernel_json, kernel::KernelMeta::GetInstance()->kernel_meta_path());
|
||||
(void)alarm(AUTODIFF_COMPILE_OVERTIME);
|
||||
auto res = GpuKernelBuildClient::Instance().AkgCompileSingle(kernel_json);
|
||||
(void)alarm(0);
|
||||
if (!res) {
|
||||
MS_LOG(ERROR) << "Akg compile failed, json: " << kernel_json;
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto new_kernel_pack = InsertCache(kernel_name, processor);
|
||||
if (new_kernel_pack == nullptr) {
|
||||
MS_LOG(ERROR) << "Insert to cache failed, kernel_name[" << kernel_name << "], fullname_with_scope["
|
||||
<< anf_node->fullname_with_scope() << "].";
|
||||
return nullptr;
|
||||
}
|
||||
return new_kernel_pack;
|
||||
}
|
||||
|
||||
KernelModPtr AkgGpuKernelBuilder::BuildByJson(const AnfNodePtr &anf_node) {
|
||||
MS_EXCEPTION_IF_NULL(anf_node);
|
||||
MS_LOG(INFO) << "Akg start compile, op[" << anf_node->fullname_with_scope() << "]";
|
||||
AkgKernelJsonGenerator json_generator;
|
||||
if (!json_generator.CollectJson(anf_node)) {
|
||||
MS_LOG(ERROR) << "Op[" << anf_node->fullname_with_scope() << "] create single kernel json failed.";
|
||||
}
|
||||
|
||||
auto kernel_pack = OpBuild(json_generator, anf_node);
|
||||
if (kernel_pack == nullptr) {
|
||||
MS_LOG(ERROR) << "Akg build failed op[" << anf_node->fullname_with_scope() << "].";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto kernel_mod_ptr = std::make_shared<GpuKernelMod>(kernel_pack);
|
||||
MS_EXCEPTION_IF_NULL(kernel_mod_ptr);
|
||||
kernel_mod_ptr->SetInputSizeList(json_generator.input_size_list());
|
||||
kernel_mod_ptr->SetOutputSizeList(json_generator.output_size_list());
|
||||
MS_LOG(INFO) << "Akg compile success, op[" << anf_node->fullname_with_scope() << "]";
|
||||
return kernel_mod_ptr;
|
||||
}
|
||||
|
||||
KernelModPtr AkgGpuKernelBuilder::FuseByJson(const AnfNodePtr &anf_node) {
|
||||
MS_EXCEPTION_IF_NULL(anf_node);
|
||||
MS_LOG(INFO) << "Akg start compile, graph_kernel[" << anf_node->fullname_with_scope() << "]";
|
||||
auto fg = AnfAlgo::GetCNodeFuncGraphPtr(anf_node);
|
||||
MS_EXCEPTION_IF_NULL(fg);
|
||||
auto mng = fg->manager();
|
||||
if (mng == nullptr) {
|
||||
mng = Manage(fg, true);
|
||||
fg->set_manager(mng);
|
||||
}
|
||||
|
||||
AnfNodePtrList node_list;
|
||||
AnfNodePtrList input_list;
|
||||
AnfNodePtrList output_list;
|
||||
GetValidKernelNodes(fg, &node_list, &input_list, &output_list);
|
||||
AkgKernelJsonGenerator json_generator;
|
||||
if (!json_generator.CollectFusedJson(node_list, input_list, output_list)) {
|
||||
MS_LOG(ERROR) << "Op[" << anf_node->fullname_with_scope() << "] create single kernel json failed.";
|
||||
}
|
||||
|
||||
auto kernel_pack = OpBuild(json_generator, anf_node);
|
||||
if (kernel_pack == nullptr) {
|
||||
MS_LOG(ERROR) << "Akg build failed, graph_kernel[" << anf_node->fullname_with_scope() << "].";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto kernel_mod_ptr = std::make_shared<GpuKernelMod>(kernel_pack);
|
||||
MS_EXCEPTION_IF_NULL(kernel_mod_ptr);
|
||||
kernel_mod_ptr->SetInputSizeList(json_generator.input_size_list());
|
||||
kernel_mod_ptr->SetOutputSizeList(json_generator.output_size_list());
|
||||
MS_LOG(INFO) << "Akg compile success, graph_kernel[" << anf_node->fullname_with_scope() << "]";
|
||||
return kernel_mod_ptr;
|
||||
}
|
||||
|
||||
KernelModPtr AkgGpuKernelBuild(const AnfNodePtr &anf_node) {
|
||||
MS_EXCEPTION_IF_NULL(anf_node);
|
||||
AkgGpuKernelBuilder akg_gpu_kernel_builder;
|
||||
if (AnfAlgo::IsGraphKernel(anf_node)) {
|
||||
return akg_gpu_kernel_builder.FuseByJson(anf_node);
|
||||
}
|
||||
return akg_gpu_kernel_builder.BuildByJson(anf_node);
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -28,19 +28,13 @@ class AkgGpuKernelBuilder : public AkgKernelBuilder {
|
|||
~AkgGpuKernelBuilder() = default;
|
||||
|
||||
kernel::KernelBuildClient *GetClient() override { return &(kernel::GpuKernelBuildClient::Instance()); }
|
||||
KernelPackPtr AkgSearchCache(const std::string &kernel_name, const std::string &processor) override;
|
||||
KernelPackPtr AkgInsertCache(const std::string &kernel_name, const std::string &processor) override;
|
||||
KernelPackPtr AkgSearchCache(const std::string &kernel_name) override;
|
||||
KernelPackPtr AkgInsertCache(const std::string &kernel_name) override;
|
||||
void AkgSetKernelMod(const KernelPackPtr &kernel_pack, const AkgKernelJsonGenerator &json_generator,
|
||||
const AnfNodePtr &anf_node) override;
|
||||
void AkgSaveJsonInfo(const string &kernel_name, const string &kernel_json) override;
|
||||
KernelModPtr BuildByJson(const AnfNodePtr &anf_node);
|
||||
KernelModPtr FuseByJson(const AnfNodePtr &anf_node);
|
||||
|
||||
private:
|
||||
KernelPackPtr OpBuild(const AkgKernelJsonGenerator &json_generator, const AnfNodePtr &anf_node);
|
||||
};
|
||||
|
||||
KernelModPtr AkgGpuKernelBuild(const AnfNodePtr &anf_node);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -29,6 +29,7 @@
|
|||
#include "ir/meta_tensor.h"
|
||||
#include "base/core_ops.h"
|
||||
#include "ir/graph_utils.h"
|
||||
#include "utils/ms_context.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
@ -803,6 +804,30 @@ std::string GetProcessorStr(const AnfNodePtr &anf_node) {
|
|||
return processor;
|
||||
}
|
||||
|
||||
Processor GetProcessorFromContext() {
|
||||
kernel::Processor processor = kernel::Processor::UNKNOWN;
|
||||
auto context_ptr = MsContext::GetInstance();
|
||||
MS_EXCEPTION_IF_NULL(context_ptr);
|
||||
auto device_info = context_ptr->get_param<std::string>(MS_CTX_DEVICE_TARGET);
|
||||
if (device_info == kGPUDevice) {
|
||||
processor = kernel::Processor::CUDA;
|
||||
} else if (device_info == kAscendDevice) {
|
||||
processor = kernel::Processor::AICORE;
|
||||
}
|
||||
return processor;
|
||||
}
|
||||
|
||||
std::string GetStrProcessorFromContext() {
|
||||
auto processor = GetProcessorFromContext();
|
||||
string str_processor = kernel::kProcessorUnknown;
|
||||
if (processor == kernel::Processor::CUDA) {
|
||||
str_processor = kernel::kProcessorCuda;
|
||||
} else if (processor == kernel::Processor::AICORE) {
|
||||
str_processor = kernel::kProcessorAiCore;
|
||||
}
|
||||
return str_processor;
|
||||
}
|
||||
|
||||
float Scaling(size_t in_size, size_t out_size, bool align_corners) {
|
||||
return (align_corners && out_size > 1) ? (in_size - 1) / static_cast<float>(out_size - 1)
|
||||
: in_size / static_cast<float>(out_size);
|
||||
|
|
|
@ -102,6 +102,8 @@ void GetGraphRealOutput(const FuncGraphPtr &func_graph, std::vector<std::pair<An
|
|||
bool IsWeightBoundary(const AnfNodePtr &node);
|
||||
std::vector<int64_t> GetReduceAttrAxis(const CNodePtr &cnode);
|
||||
std::string GetProcessorStr(const AnfNodePtr &anf_node);
|
||||
Processor GetProcessorFromContext();
|
||||
std::string GetStrProcessorFromContext();
|
||||
float Scaling(size_t in_size, size_t out_size, bool align_corners);
|
||||
float ScaleGrid(const int x, const float scale);
|
||||
struct CachedInterpolation {
|
||||
|
@ -130,7 +132,6 @@ inline T ComputeLerp(T top_left, T top_right, T bottom_left, T bottom_right, T x
|
|||
T bottom = bottom_left + (bottom_right - bottom_left) * x_lerp;
|
||||
return top + (bottom - top) * y_lerp;
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "backend/session/kernel_graph.h"
|
||||
#include "debug/anf_ir_dump.h"
|
||||
#include "backend/kernel_compiler/common_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
|
@ -85,7 +86,7 @@ inline int64_t CalNewIndex(int64_t old_index, int64_t reduce_index) {
|
|||
}
|
||||
} // namespace
|
||||
std::shared_ptr<AtomicAddChecker> AtomicAddChecker::Init() {
|
||||
auto processor = GetProcessorFromContext();
|
||||
auto processor = kernel::GetProcessorFromContext();
|
||||
if (processor == kernel::Processor::AICORE) {
|
||||
return std::make_shared<AtomicAddCheckerAscend>();
|
||||
} else if (processor == kernel::Processor::CUDA) {
|
||||
|
@ -401,8 +402,7 @@ CNodePtr AtomicCleanInsertter::CreateAtomicCleanCompositeNode(const KernelGraphP
|
|||
new_sub_graph->set_output(broadcast_to_node_inner);
|
||||
auto broadcast_to_composite_node = main_graph->NewCNode({NewValueNode(new_sub_graph)});
|
||||
broadcast_to_composite_node->set_abstract(broadcast_to_node_inner->abstract());
|
||||
SetNewKernelInfo(broadcast_to_composite_node, new_sub_graph, {}, {broadcast_to_node_inner},
|
||||
AnfAlgo::GetProcessor(atomic_add_node_));
|
||||
SetNewKernelInfo(broadcast_to_composite_node, new_sub_graph, {}, {broadcast_to_node_inner});
|
||||
auto graph_attr = ExtractGraphKernelName(TopoSort(new_sub_graph->get_return()), "", "atomic_clean");
|
||||
new_sub_graph->set_attr(FUNC_GRAPH_ATTR_GRAPH_KERNEL, MakeValue(graph_attr));
|
||||
new_sub_graph->set_attr("composite_type", MakeValue("atomic_clean"));
|
||||
|
|
|
@ -260,7 +260,7 @@ AnfNodePtr EliminateHangingOutput::ReplaceMakeTuple(const AnfNodePtr &node, cons
|
|||
AnfNodePtrList outputs;
|
||||
kernel::GetFuncGraphOutputNodes(func_graph, &outputs);
|
||||
auto graph_kernel_node = CreateNewFuseCNode(node->func_graph(), func_graph, inputs, outputs);
|
||||
SetNewKernelInfo(graph_kernel_node, func_graph, inputs, outputs, AnfAlgo::GetProcessor(node));
|
||||
SetNewKernelInfo(graph_kernel_node, func_graph, inputs, outputs);
|
||||
return graph_kernel_node;
|
||||
}
|
||||
|
||||
|
|
|
@ -143,7 +143,7 @@ AnfNodePtr DefaultExpander::CreateExpandGraphKernel(const FuncGraphPtr &new_func
|
|||
kernel::GetValidKernelNodes(new_func_graph, &kernel_nodes);
|
||||
kernel::GetFuncGraphOutputNodes(new_func_graph, &outputs);
|
||||
auto graph_kernel_node = CreateNewFuseCNode(func_graph, new_func_graph, inputs, outputs);
|
||||
SetNewKernelInfo(graph_kernel_node, new_func_graph, inputs, outputs, AnfAlgo::GetProcessor(old_node));
|
||||
SetNewKernelInfo(graph_kernel_node, new_func_graph, inputs, outputs);
|
||||
MS_LOG(DEBUG) << "Expand node: " << old_node->fullname_with_scope()
|
||||
<< " with: " << graph_kernel_node->fullname_with_scope();
|
||||
return graph_kernel_node;
|
||||
|
|
|
@ -34,7 +34,6 @@
|
|||
#include "pipeline/jit/action.h"
|
||||
#include "utils/context/graph_kernel_flags.h"
|
||||
#include "vm/segment_runner.h"
|
||||
#include "utils/ms_context.h"
|
||||
#if ENABLE_GPU
|
||||
#include "runtime/device/gpu/kernel_info_setter.h"
|
||||
#endif
|
||||
|
@ -306,7 +305,7 @@ std::tuple<FuncGraphPtr, AnfNodePtrList, AnfNodePtrList> MixedNodesTransToGraph(
|
|||
}
|
||||
|
||||
void SetNewKernelInfo(const AnfNodePtr &new_node, const FuncGraphPtr &fg, const AnfNodePtrList &inputs,
|
||||
const AnfNodePtrList &outputs, kernel::Processor processor) {
|
||||
const AnfNodePtrList &outputs) {
|
||||
std::vector<std::string> graph_input_format;
|
||||
std::vector<TypeId> graph_input_type;
|
||||
std::vector<std::string> graph_output_format;
|
||||
|
@ -339,7 +338,7 @@ void SetNewKernelInfo(const AnfNodePtr &new_node, const FuncGraphPtr &fg, const
|
|||
graph_info_builder.SetInputsDeviceType(graph_input_type);
|
||||
graph_info_builder.SetOutputsFormat(graph_output_format);
|
||||
graph_info_builder.SetOutputsDeviceType(graph_output_type);
|
||||
graph_info_builder.SetProcessor(processor);
|
||||
graph_info_builder.SetProcessor(kernel::GetProcessorFromContext());
|
||||
graph_info_builder.SetKernelType(KernelType::AKG_KERNEL);
|
||||
graph_info_builder.SetFusionType(kernel::FusionType::OPAQUE);
|
||||
auto graph_selected_info = graph_info_builder.Build();
|
||||
|
@ -443,7 +442,7 @@ std::tuple<AnfNodePtr, AnfNodePtrList> FuseNodesToSubGraph(const std::vector<Anf
|
|||
|
||||
std::tie(fg, inputs, outputs) = MixedNodesTransToGraph(fuse_nodes, &src_outputs);
|
||||
auto fuse_new_node = CreateNewFuseCNode(kernel_graph, fg, inputs, outputs);
|
||||
SetNewKernelInfo(fuse_new_node, fg, inputs, outputs, AnfAlgo::GetProcessor(fuse_nodes[0]));
|
||||
SetNewKernelInfo(fuse_new_node, fg, inputs, outputs);
|
||||
// Handle get-item probleam.
|
||||
ReplaceNewFuseCNode(kernel_graph, fuse_new_node, src_outputs);
|
||||
|
||||
|
@ -807,19 +806,6 @@ std::vector<int64_t> GetReduceAxis(const AnfNodePtr &node) {
|
|||
return axis;
|
||||
}
|
||||
|
||||
kernel::Processor GetProcessorFromContext() {
|
||||
kernel::Processor processor = kernel::Processor::UNKNOWN;
|
||||
auto context_ptr = MsContext::GetInstance();
|
||||
MS_EXCEPTION_IF_NULL(context_ptr);
|
||||
auto device_info = context_ptr->get_param<std::string>(MS_CTX_DEVICE_TARGET);
|
||||
if (device_info == kGPUDevice) {
|
||||
processor = kernel::Processor::CUDA;
|
||||
} else if (device_info == kAscendDevice) {
|
||||
processor = kernel::Processor::AICORE;
|
||||
}
|
||||
return processor;
|
||||
}
|
||||
|
||||
CNodePtr CreateCNode(const std::vector<AnfNodePtr> &inputs, const FuncGraphPtr &func_graph, const DataInfo &out_info) {
|
||||
// Limitation: 1. Node's attributes should be set out of this function; 2. only one output.
|
||||
MS_EXCEPTION_IF_NULL(out_info.type);
|
||||
|
@ -876,7 +862,7 @@ CNodePtr CreateCNode(const std::vector<AnfNodePtr> &inputs, const FuncGraphPtr &
|
|||
info_builder.SetInputsDeviceType(input_types);
|
||||
info_builder.SetOutputsFormat(output_formats);
|
||||
info_builder.SetOutputsDeviceType(output_types);
|
||||
info_builder.SetProcessor(GetProcessorFromContext());
|
||||
info_builder.SetProcessor(kernel::GetProcessorFromContext());
|
||||
info_builder.SetKernelType(KernelType::AKG_KERNEL);
|
||||
info_builder.SetFusionType(kernel::FusionType::OPAQUE);
|
||||
auto selected_info = info_builder.Build();
|
||||
|
|
|
@ -57,7 +57,7 @@ bool ConvertNonscalarTensorToParameter(const FuncGraphPtr &fg, AnfNodePtrList *i
|
|||
std::tuple<FuncGraphPtr, AnfNodePtrList, AnfNodePtrList> MixedNodesTransToGraph(const AnfNodePtrList &fuse_nodes,
|
||||
AnfNodePtrList *src_outputs = nullptr);
|
||||
void SetNewKernelInfo(const AnfNodePtr &new_node, const FuncGraphPtr &fg, const AnfNodePtrList &inputs,
|
||||
const AnfNodePtrList &outputs, kernel::Processor processor);
|
||||
const AnfNodePtrList &outputs);
|
||||
AnfNodePtr CreateNewFuseCNode(const FuncGraphPtr &kernel_graph, const FuncGraphPtr &fg, const AnfNodePtrList &inputs,
|
||||
const AnfNodePtrList &outputs);
|
||||
void ReplaceNewFuseCNode(const FuncGraphPtr &kernel_graph, const AnfNodePtr &new_fuse_cnode,
|
||||
|
@ -84,7 +84,6 @@ TypePtr GetType(const AnfNodePtr &node);
|
|||
ShapeVector GetShape(const AnfNodePtr &node);
|
||||
ShapeVector GetDeviceShape(const AnfNodePtr &node);
|
||||
std::vector<int64_t> GetReduceAxis(const AnfNodePtr &node);
|
||||
kernel::Processor GetProcessorFromContext();
|
||||
|
||||
CNodePtr CreateCNode(const std::vector<AnfNodePtr> &inputs, const FuncGraphPtr &func_graph, const DataInfo &out_info);
|
||||
void SetNodeAttrSafely(const std::string &key, const ValuePtr &value, const AnfNodePtr &node);
|
||||
|
|
|
@ -484,7 +484,7 @@ class Splitter {
|
|||
AnfNodePtrList inputs(cnode->inputs().begin() + 1, cnode->inputs().end());
|
||||
AnfNodePtrList outputs;
|
||||
kernel::GetFuncGraphOutputNodes(sub_func_graph, &outputs);
|
||||
SetNewKernelInfo(cnode, sub_func_graph, inputs, outputs, AnfAlgo::GetProcessor(old_subgraph_cnode_));
|
||||
SetNewKernelInfo(cnode, sub_func_graph, inputs, outputs);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@ bool TensorPromotion::Run(const FuncGraphPtr &func_graph) {
|
|||
inputs.insert(inputs.end(), args.begin() + 1, args.end());
|
||||
kernel::GetFuncGraphOutputNodes(fg, &outputs);
|
||||
auto new_cnode = CreateNewFuseCNode(func_graph, fg, inputs, outputs);
|
||||
SetNewKernelInfo(new_cnode, fg, inputs, outputs, AnfAlgo::GetProcessor(node));
|
||||
SetNewKernelInfo(new_cnode, fg, inputs, outputs);
|
||||
mng->Replace(node, new_cnode);
|
||||
changed = true;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue