forked from mindspore-Ecosystem/mindspore
init random normal
This commit is contained in:
parent
c20cd12216
commit
4a1641bfd2
|
@ -0,0 +1,156 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_RANDOM_OP_CPU_KERNEL_H_
|
||||||
|
#define MINDSPORE_CCSRC_KERNEL_CPU_RANDOM_OP_CPU_KERNEL_H_
|
||||||
|
#include <securec.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include <array>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace kernel {
|
||||||
|
static constexpr int gResultNum = 4;
|
||||||
|
class PhiloxGenerator {
|
||||||
|
public:
|
||||||
|
explicit PhiloxGenerator(uint64_t seed) {
|
||||||
|
key_var_[0] = static_cast<uint32_t>(seed);
|
||||||
|
key_var_[1] = static_cast<uint32_t>(seed >> 32);
|
||||||
|
counter_[0] = 0;
|
||||||
|
counter_[1] = 0;
|
||||||
|
counter_[2] = static_cast<uint32_t>(seed);
|
||||||
|
counter_[3] = static_cast<uint32_t>(seed >> 32);
|
||||||
|
}
|
||||||
|
|
||||||
|
void Jump() {
|
||||||
|
if ((++counter_[0] == 0) && (++counter_[1] == 0) && (++counter_[2] == 0)) {
|
||||||
|
++counter_[3];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void JumpStep(uint64_t step) {
|
||||||
|
uint64_t min_counter, max_counter;
|
||||||
|
min_counter = static_cast<uint64_t>(counter_[1]);
|
||||||
|
min_counter = min_counter << 32;
|
||||||
|
min_counter += counter_[0];
|
||||||
|
|
||||||
|
max_counter = static_cast<uint64_t>(counter_[3]);
|
||||||
|
max_counter = max_counter << 32;
|
||||||
|
max_counter += counter_[2];
|
||||||
|
min_counter += step;
|
||||||
|
if (min_counter < step) {
|
||||||
|
max_counter++;
|
||||||
|
}
|
||||||
|
counter_[0] = static_cast<uint32_t>(min_counter);
|
||||||
|
counter_[1] = static_cast<uint32_t>(min_counter >> 32);
|
||||||
|
counter_[2] = static_cast<uint32_t>(max_counter);
|
||||||
|
counter_[3] = static_cast<uint32_t>(max_counter >> 32);
|
||||||
|
}
|
||||||
|
|
||||||
|
static std::array<uint32_t, 4> Compute(const std::array<uint32_t, 4> &counter_,
|
||||||
|
const std::array<uint32_t, 2> &key_var_) {
|
||||||
|
std::array<uint32_t, 4> min_value;
|
||||||
|
std::array<uint32_t, 4> max_value;
|
||||||
|
for (uint32_t i = 0; i < gResultNum; i += 2) {
|
||||||
|
uint64_t temp = static_cast<uint64_t>(keyConstant[i]) * counter_[i];
|
||||||
|
min_value[i] = static_cast<uint32_t>(temp);
|
||||||
|
max_value[i] = static_cast<uint32_t>(temp >> 32);
|
||||||
|
}
|
||||||
|
std::array<uint32_t, 4> result;
|
||||||
|
result[0] = (max_value[2] ^ counter_[1] ^ key_var_[0]);
|
||||||
|
result[1] = min_value[2];
|
||||||
|
result[2] = (max_value[0] ^ counter_[3] ^ key_var_[0]);
|
||||||
|
result[3] = min_value[0];
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::array<uint32_t, 4> operator()() {
|
||||||
|
for (uint32_t i = 0; i < 10; i++) {
|
||||||
|
counter_ = Compute(counter_, key_var_);
|
||||||
|
key_var_[0] += keyConstant[1];
|
||||||
|
key_var_[1] += keyConstant[3];
|
||||||
|
}
|
||||||
|
Jump();
|
||||||
|
return counter_;
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
std::array<uint32_t, 4> counter_;
|
||||||
|
std::array<uint32_t, 2> key_var_;
|
||||||
|
static constexpr std::array<uint32_t, 4> keyConstant = {0xD2511F53, 0x9E3779B9, 0xCD9E8D57, 0xBB67AE85};
|
||||||
|
};
|
||||||
|
|
||||||
|
template <class T, typename vartype>
|
||||||
|
class NormalDistribution;
|
||||||
|
template <class T>
|
||||||
|
class NormalDistribution<T, float> {
|
||||||
|
public:
|
||||||
|
std::array<float, gResultNum> result;
|
||||||
|
|
||||||
|
bool UInt32ToFloat32(uint32_t input, float *output) {
|
||||||
|
const uint32_t temp_value = input & 0x7fffffu;
|
||||||
|
const uint32_t exp = static_cast<uint32_t>(127);
|
||||||
|
const uint32_t val = (exp << 23) | temp_value;
|
||||||
|
errno_t mem_ret;
|
||||||
|
mem_ret = memcpy_s(output, sizeof(val), &val, sizeof(val));
|
||||||
|
if (mem_ret != EOK) {
|
||||||
|
std::cout << "UInt32ToFloat32 memcpy is failed" << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
*output = *output - 1.0f;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::array<float, gResultNum> operator()(T *generator) {
|
||||||
|
std::array<uint32_t, 4> generate_value = (*generator)();
|
||||||
|
const float PI = 3.14;
|
||||||
|
for (uint32_t i = 0; i < gResultNum; i += 2) {
|
||||||
|
float temp[2];
|
||||||
|
UInt32ToFloat32(generate_value[i], &temp[0]);
|
||||||
|
UInt32ToFloat32(generate_value[i + 1], &temp[1]);
|
||||||
|
const float threshold = 1.0e-7f;
|
||||||
|
temp[0] = temp[0] < threshold ? threshold : temp[0];
|
||||||
|
temp[1] = temp[1] < threshold ? threshold : temp[1];
|
||||||
|
result[i] = sqrt(-2.0 * log(temp[0])) * sin(2 * PI * temp[1]);
|
||||||
|
result[i + 1] = sqrt(-2.0 * log(temp[0])) * cos(2 * PI * temp[1]);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <class T>
|
||||||
|
bool FillRandoms(PhiloxGenerator generator, float *output, int64_t vet_size, int64_t thread_Id) {
|
||||||
|
T distribution;
|
||||||
|
errno_t mem_ret;
|
||||||
|
generator.JumpStep((vet_size * thread_Id + gResultNum - 1) / gResultNum);
|
||||||
|
for (int32_t i = 0; i < vet_size; i += gResultNum) {
|
||||||
|
auto outputResult = distribution(&generator);
|
||||||
|
if (vet_size - i >= gResultNum) {
|
||||||
|
mem_ret = memcpy_s(&output[i], gResultNum * sizeof(float), &outputResult[0], gResultNum * sizeof(float));
|
||||||
|
} else {
|
||||||
|
mem_ret = memcpy_s(&output[i], (vet_size - i) * sizeof(float), &outputResult[0], (vet_size - i) * sizeof(float));
|
||||||
|
}
|
||||||
|
if (mem_ret != EOK) {
|
||||||
|
std::cout << "FillRandoms memcpy is failed" << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace kernel
|
||||||
|
} // namespace mindspore
|
||||||
|
|
||||||
|
#endif // MINDSPORE_CCSRC_KERNEL_CPU_RANDOM_OP_CPU_KERNEL_H_
|
|
@ -94,6 +94,8 @@ PYBIND11_MODULE(_c_expression, m) {
|
||||||
(void)m.def("init_exec_dataset", &mindspore::pipeline::InitExecDataset, py::arg("queue_name"), py::arg("size"),
|
(void)m.def("init_exec_dataset", &mindspore::pipeline::InitExecDataset, py::arg("queue_name"), py::arg("size"),
|
||||||
py::arg("batch_size"), py::arg("types"), py::arg("shapes"), py::arg("input_indexs"),
|
py::arg("batch_size"), py::arg("types"), py::arg("shapes"), py::arg("input_indexs"),
|
||||||
py::arg("phase") = py::str("dataset"), py::arg("need_run") = py::bool_(true), "Init and exec dataset.");
|
py::arg("phase") = py::str("dataset"), py::arg("need_run") = py::bool_(true), "Init and exec dataset.");
|
||||||
|
(void)m.def("random_normal", &mindspore::pipeline::InitRandomNormal, py::arg("mean"), py::arg("stddev"),
|
||||||
|
py::arg("outshape"), py::arg("seed"), py::arg("outputtensor"), "InitRandRandom");
|
||||||
(void)m.def("_set_dataset_mode_config", &mindspore::ConfigManager::SetDatasetModeConfig, "API for set dataset mode.");
|
(void)m.def("_set_dataset_mode_config", &mindspore::ConfigManager::SetDatasetModeConfig, "API for set dataset mode.");
|
||||||
(void)m.def("init_backend", &mindspore::pipeline::InitBackend, "Init Backend.");
|
(void)m.def("init_backend", &mindspore::pipeline::InitBackend, "Init Backend.");
|
||||||
|
|
||||||
|
|
|
@ -41,6 +41,7 @@
|
||||||
#include "pipeline/pynative/pynative_execute.h"
|
#include "pipeline/pynative/pynative_execute.h"
|
||||||
#include "frontend/optimizer/py_pass_manager.h"
|
#include "frontend/optimizer/py_pass_manager.h"
|
||||||
#include "pybind_api/pybind_patch.h"
|
#include "pybind_api/pybind_patch.h"
|
||||||
|
#include "backend/kernel_compiler/cpu/random_op_cpu_kernel.h"
|
||||||
|
|
||||||
#if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
|
#if (ENABLE_CPU && (ENABLE_D || ENABLE_GPU))
|
||||||
#include "frontend/parallel/ps/common.h"
|
#include "frontend/parallel/ps/common.h"
|
||||||
|
@ -878,6 +879,50 @@ bool InitExecDatasetVm(const std::string &queue_name, int64_t size, int64_t batc
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool InitRandomNormal(float mean, float stddev, std::vector<int64_t> out_shape, int64_t seed,
|
||||||
|
const py::object &output_tensor) {
|
||||||
|
if (out_shape.size() == 0) {
|
||||||
|
std::cout << "output data shape is error" << std::endl;
|
||||||
|
}
|
||||||
|
int64_t total_count = 1;
|
||||||
|
for (uint32_t i = 0; i < out_shape.size(); i++) {
|
||||||
|
total_count *= out_shape[i];
|
||||||
|
}
|
||||||
|
uint32_t thread_num = 16;
|
||||||
|
if (total_count <= thread_num) {
|
||||||
|
thread_num = 1;
|
||||||
|
}
|
||||||
|
auto temp = py::cast<std::shared_ptr<Tensor>>(output_tensor);
|
||||||
|
float *start_ptr = reinterpret_cast<float *>(temp->data_c());
|
||||||
|
if (start_ptr == nullptr) {
|
||||||
|
std::cout << "start_ptr is nullptr" << std::endl;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
int64_t batchSize = total_count / thread_num;
|
||||||
|
std::vector<std::thread> threads(thread_num);
|
||||||
|
mindspore::kernel::PhiloxGenerator generator = mindspore::kernel::PhiloxGenerator(seed);
|
||||||
|
if (thread_num != 1) {
|
||||||
|
for (uint32_t i = 0; i < thread_num - 1; i++) {
|
||||||
|
float *offset_ptr = start_ptr + batchSize * i;
|
||||||
|
threads[i] = std::thread(mindspore::kernel::FillRandoms<
|
||||||
|
mindspore::kernel::NormalDistribution<mindspore::kernel::PhiloxGenerator, float>>,
|
||||||
|
generator, offset_ptr, batchSize, i);
|
||||||
|
}
|
||||||
|
float *offset_ptr = start_ptr + batchSize * (thread_num - 1);
|
||||||
|
threads[thread_num - 1] = std::thread(
|
||||||
|
mindspore::kernel::FillRandoms<mindspore::kernel::NormalDistribution<mindspore::kernel::PhiloxGenerator, float>>,
|
||||||
|
generator, offset_ptr, total_count - (thread_num - 1) * batchSize, thread_num - 1);
|
||||||
|
} else {
|
||||||
|
threads[0] = std::thread(
|
||||||
|
mindspore::kernel::FillRandoms<mindspore::kernel::NormalDistribution<mindspore::kernel::PhiloxGenerator, float>>,
|
||||||
|
generator, start_ptr, total_count, 0);
|
||||||
|
}
|
||||||
|
for (uint32_t i = 0; i < thread_num; i++) {
|
||||||
|
threads[i].join();
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
void ResetOpId() { mindspore::id_generator::reset_id(); }
|
void ResetOpId() { mindspore::id_generator::reset_id(); }
|
||||||
|
|
||||||
void InitHccl() {
|
void InitHccl() {
|
||||||
|
|
|
@ -139,6 +139,10 @@ bool InitExecDatasetVm(const std::string &queue_name, int64_t size, int64_t batc
|
||||||
const std::vector<TypePtr> &types, const std::vector<std::vector<int64_t>> &shapes,
|
const std::vector<TypePtr> &types, const std::vector<std::vector<int64_t>> &shapes,
|
||||||
const std::vector<int64_t> &input_indexes, bool need_run);
|
const std::vector<int64_t> &input_indexes, bool need_run);
|
||||||
|
|
||||||
|
// init random normal
|
||||||
|
bool InitRandomNormal(float mean, float stddev, std::vector<int64_t> outshape, int64_t seed,
|
||||||
|
const py::object &outputTensor);
|
||||||
|
|
||||||
void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef *const arg_list);
|
void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef *const arg_list);
|
||||||
|
|
||||||
} // namespace pipeline
|
} // namespace pipeline
|
||||||
|
|
|
@ -23,6 +23,7 @@ from mindspore import log as logger
|
||||||
|
|
||||||
from . import dtype as mstype
|
from . import dtype as mstype
|
||||||
from .tensor import Tensor
|
from .tensor import Tensor
|
||||||
|
from .._c_expression import random_normal
|
||||||
|
|
||||||
_INITIALIZER_ALIAS = dict()
|
_INITIALIZER_ALIAS = dict()
|
||||||
|
|
||||||
|
@ -279,9 +280,12 @@ class Normal(Initializer):
|
||||||
self.sigma = sigma
|
self.sigma = sigma
|
||||||
|
|
||||||
def _initialize(self, arr):
|
def _initialize(self, arr):
|
||||||
tmp = np.random.normal(0, self.sigma, arr.shape)
|
seed = np.random.get_state()[1][0]
|
||||||
_assignment(arr, tmp)
|
output_tensor = Tensor(np.zeros(arr.shape, dtype=np.float32))
|
||||||
|
random_normal(0, self.sigma, arr.shape, seed, output_tensor)
|
||||||
|
output_data = output_tensor.asnumpy()
|
||||||
|
output_data *= self.sigma
|
||||||
|
_assignment(arr, output_data)
|
||||||
|
|
||||||
@_register()
|
@_register()
|
||||||
class TruncatedNormal(Initializer):
|
class TruncatedNormal(Initializer):
|
||||||
|
@ -327,6 +331,8 @@ def initializer(init, shape=None, dtype=mstype.float32):
|
||||||
|
|
||||||
Examples:
|
Examples:
|
||||||
>>> tensor = initializer('ones', [1, 2, 3], mindspore.float32)
|
>>> tensor = initializer('ones', [1, 2, 3], mindspore.float32)
|
||||||
|
>>> tensor = initializer(One(), [1, 2, 3], mindspore.float32)
|
||||||
|
>>> tensor = initializer(0, [1, 2, 3], mindspore.float32)
|
||||||
"""
|
"""
|
||||||
if not isinstance(init, (Tensor, numbers.Number, str, Initializer)):
|
if not isinstance(init, (Tensor, numbers.Number, str, Initializer)):
|
||||||
raise TypeError("Unsupported init type '{}'.".format(type(init)))
|
raise TypeError("Unsupported init type '{}'.".format(type(init)))
|
||||||
|
|
Loading…
Reference in New Issue