add dde err log watching testcase

This commit is contained in:
chenfei 2022-06-28 15:54:08 +08:00
parent 28756cf5f1
commit 498ed59cf6
2 changed files with 139 additions and 0 deletions

View File

@ -0,0 +1,49 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import subprocess
import pytest
def run_watch_dde_network(file_name, log_file_name):
_cur_dir = os.path.dirname(os.path.realpath(__file__))
file_name = os.path.join(_cur_dir, file_name)
assert os.path.exists(file_name)
log_file_name = os.path.join(_cur_dir, log_file_name)
if os.path.exists(log_file_name):
os.remove(log_file_name)
assert not os.path.exists(log_file_name)
cmd_first = f"GLOG_v=2 python " + file_name + " > " + log_file_name + " 2>&1"
subprocess.check_output(cmd_first, shell=True)
assert os.path.exists(log_file_name)
with open(log_file_name, "r") as f_first:
data_first = f_first.read()
assert "Purify elements failed" not in data_first
# Clean files
os.remove(log_file_name)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_watch_dde_error_log():
"""
Feature: DDE.
Description: Some error raised in DDE process unexpected, so add this case to watch it.
Expectation: No error raised in DDE process .
"""
run_watch_dde_network("./watch_dde_error_log.py", "watch_dde_error_log.log")

View File

@ -0,0 +1,90 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from mindspore.nn import Cell
from mindspore.common import Tensor
import mindspore.ops.operations as P
import mindspore.ops.functional as F
import numpy as np
def test_switch_simplify_avoid_dead_node():
"""
Feature: Switch simplify pass.
Description: If switch simplify pass can't simplify constant tensor condition,
dead node will exist in backend.
Expectation: output correct.
"""
class Net(Cell):
def __init__(self):
super().__init__()
self.op = P.Add()
def construct(self, x, y):
if y != x:
x = y - 3
elif x == 4:
for r in range(2):
x = 1 / y
if x > 2:
y = y + 3
y = y - y
y = y * x
elif y >= x:
x = x * x
elif x > y:
x = y - r
else:
y = 2 + x
for _ in range(2):
x = x * y
x = x - 3
y = y + 2
if x > 3:
break
if x > 2:
break
elif x == y:
if y <= x:
y = x / 2
x = 3 + y
x = x * 2
elif x == 2:
x = y * y
elif x < y:
y = 2 * y
elif x != 2:
y = x * y
while x != 5:
break
return self.op(x, y)
x = np.array([4], np.float32)
y = np.array([4], np.float32)
net = Net()
out = net(Tensor(x), Tensor(y))
grad_net = F.grad(net, grad_position=(0, 1))
fgrad = grad_net(Tensor(x), Tensor(y))
sgrad_net = F.grad(grad_net)
sgrad = sgrad_net(Tensor(x), Tensor(y))
assert np.allclose(out.asnumpy(), np.array([-19.75], np.float32))
assert np.allclose(fgrad[0].asnumpy(), np.array([0.], np.float32))
assert np.allclose(fgrad[1].asnumpy(), np.array([-2.03125], np.float32))
assert np.allclose(sgrad.asnumpy(), np.array([0.], np.float32))
if __name__ == "__main__":
test_switch_simplify_avoid_dead_node()