forked from mindspore-Ecosystem/mindspore
add dde err log watching testcase
This commit is contained in:
parent
28756cf5f1
commit
498ed59cf6
|
@ -0,0 +1,49 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import subprocess
|
||||
import pytest
|
||||
|
||||
|
||||
def run_watch_dde_network(file_name, log_file_name):
|
||||
_cur_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
file_name = os.path.join(_cur_dir, file_name)
|
||||
assert os.path.exists(file_name)
|
||||
|
||||
log_file_name = os.path.join(_cur_dir, log_file_name)
|
||||
if os.path.exists(log_file_name):
|
||||
os.remove(log_file_name)
|
||||
assert not os.path.exists(log_file_name)
|
||||
cmd_first = f"GLOG_v=2 python " + file_name + " > " + log_file_name + " 2>&1"
|
||||
subprocess.check_output(cmd_first, shell=True)
|
||||
assert os.path.exists(log_file_name)
|
||||
with open(log_file_name, "r") as f_first:
|
||||
data_first = f_first.read()
|
||||
assert "Purify elements failed" not in data_first
|
||||
|
||||
# Clean files
|
||||
os.remove(log_file_name)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_watch_dde_error_log():
|
||||
"""
|
||||
Feature: DDE.
|
||||
Description: Some error raised in DDE process unexpected, so add this case to watch it.
|
||||
Expectation: No error raised in DDE process .
|
||||
"""
|
||||
run_watch_dde_network("./watch_dde_error_log.py", "watch_dde_error_log.log")
|
|
@ -0,0 +1,90 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.common import Tensor
|
||||
import mindspore.ops.operations as P
|
||||
import mindspore.ops.functional as F
|
||||
import numpy as np
|
||||
|
||||
|
||||
def test_switch_simplify_avoid_dead_node():
|
||||
"""
|
||||
Feature: Switch simplify pass.
|
||||
Description: If switch simplify pass can't simplify constant tensor condition,
|
||||
dead node will exist in backend.
|
||||
Expectation: output correct.
|
||||
"""
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.op = P.Add()
|
||||
|
||||
def construct(self, x, y):
|
||||
if y != x:
|
||||
x = y - 3
|
||||
elif x == 4:
|
||||
for r in range(2):
|
||||
x = 1 / y
|
||||
if x > 2:
|
||||
y = y + 3
|
||||
y = y - y
|
||||
y = y * x
|
||||
elif y >= x:
|
||||
x = x * x
|
||||
elif x > y:
|
||||
x = y - r
|
||||
else:
|
||||
y = 2 + x
|
||||
for _ in range(2):
|
||||
x = x * y
|
||||
x = x - 3
|
||||
y = y + 2
|
||||
if x > 3:
|
||||
break
|
||||
if x > 2:
|
||||
break
|
||||
elif x == y:
|
||||
if y <= x:
|
||||
y = x / 2
|
||||
x = 3 + y
|
||||
x = x * 2
|
||||
elif x == 2:
|
||||
x = y * y
|
||||
elif x < y:
|
||||
y = 2 * y
|
||||
elif x != 2:
|
||||
y = x * y
|
||||
while x != 5:
|
||||
break
|
||||
return self.op(x, y)
|
||||
|
||||
x = np.array([4], np.float32)
|
||||
y = np.array([4], np.float32)
|
||||
net = Net()
|
||||
out = net(Tensor(x), Tensor(y))
|
||||
grad_net = F.grad(net, grad_position=(0, 1))
|
||||
fgrad = grad_net(Tensor(x), Tensor(y))
|
||||
sgrad_net = F.grad(grad_net)
|
||||
sgrad = sgrad_net(Tensor(x), Tensor(y))
|
||||
assert np.allclose(out.asnumpy(), np.array([-19.75], np.float32))
|
||||
assert np.allclose(fgrad[0].asnumpy(), np.array([0.], np.float32))
|
||||
assert np.allclose(fgrad[1].asnumpy(), np.array([-2.03125], np.float32))
|
||||
assert np.allclose(sgrad.asnumpy(), np.array([0.], np.float32))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_switch_simplify_avoid_dead_node()
|
Loading…
Reference in New Issue