!47730 支持bitwise语法

Merge pull request !47730 from KXiong/master
This commit is contained in:
i-robot 2023-01-11 08:38:36 +00:00 committed by Gitee
commit 478775a322
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
7 changed files with 245 additions and 45 deletions

View File

@ -98,6 +98,9 @@ int BitwiseCpuKernelMod::Resize(const BaseOperatorPtr &base_operator, const std:
}
switch (input_type_1_) {
case kNumberTypeBool:
InitFunc<bool>();
break;
case kNumberTypeInt8:
InitFunc<int8_t>();
break;
@ -236,10 +239,11 @@ bool BitwiseCpuKernelMod::LaunchKernel(const std::vector<kernel::AddressPtr> &in
const std::vector<std::pair<KernelAttr, BitwiseCpuKernelMod::KernelRunFunc>> &BitwiseCpuKernelMod::GetFuncList() const {
static const std::vector<std::pair<KernelAttr, BitwiseCpuKernelMod::KernelRunFunc>> func_list = {
{BITWISE_CPU_KERNEL_MATCH(kNumberTypeInt8, int8_t)}, {BITWISE_CPU_KERNEL_MATCH(kNumberTypeInt16, int16_t)},
{BITWISE_CPU_KERNEL_MATCH(kNumberTypeInt32, int32_t)}, {BITWISE_CPU_KERNEL_MATCH(kNumberTypeInt64, int64_t)},
{BITWISE_CPU_KERNEL_MATCH(kNumberTypeUInt8, uint8_t)}, {BITWISE_CPU_KERNEL_MATCH(kNumberTypeUInt16, uint16_t)},
{BITWISE_CPU_KERNEL_MATCH(kNumberTypeUInt32, uint32_t)}, {BITWISE_CPU_KERNEL_MATCH(kNumberTypeUInt64, uint64_t)},
{BITWISE_CPU_KERNEL_MATCH(kNumberTypeBool, bool)}, {BITWISE_CPU_KERNEL_MATCH(kNumberTypeInt8, int8_t)},
{BITWISE_CPU_KERNEL_MATCH(kNumberTypeInt16, int16_t)}, {BITWISE_CPU_KERNEL_MATCH(kNumberTypeInt32, int32_t)},
{BITWISE_CPU_KERNEL_MATCH(kNumberTypeInt64, int64_t)}, {BITWISE_CPU_KERNEL_MATCH(kNumberTypeUInt8, uint8_t)},
{BITWISE_CPU_KERNEL_MATCH(kNumberTypeUInt16, uint16_t)}, {BITWISE_CPU_KERNEL_MATCH(kNumberTypeUInt32, uint32_t)},
{BITWISE_CPU_KERNEL_MATCH(kNumberTypeUInt64, uint64_t)},
};
return func_list;
}

View File

@ -44,7 +44,7 @@ TypePtr BitwiseAndInferType(const PrimitivePtr &prim, const std::vector<Abstract
std::map<std::string, TypePtr> types;
(void)types.emplace("x", input_args[0]->BuildType());
(void)types.emplace("y", input_args[1]->BuildType());
const std::set<TypePtr> valid_types = {kInt8, kInt16, kInt32, kInt64, kUInt8, kUInt16, kUInt32, kUInt64};
const std::set<TypePtr> valid_types = {kBool, kInt8, kInt16, kInt32, kInt64, kUInt8, kUInt16, kUInt32, kUInt64};
return CheckAndConvertUtils::CheckTensorTypeSame(types, valid_types, prim->name());
}
} // namespace

View File

@ -44,7 +44,7 @@ TypePtr BitwiseOrInferType(const PrimitivePtr &prim, const std::vector<AbstractB
std::map<std::string, TypePtr> types;
(void)types.emplace("x", input_args[0]->BuildType());
(void)types.emplace("y", input_args[1]->BuildType());
const std::set<TypePtr> valid_types = {kInt8, kInt16, kInt32, kInt64, kUInt8, kUInt16, kUInt32, kUInt64};
const std::set<TypePtr> valid_types = {kBool, kInt8, kInt16, kInt32, kInt64, kUInt8, kUInt16, kUInt32, kUInt64};
return CheckAndConvertUtils::CheckTensorTypeSame(types, valid_types, prim->name());
}
} // namespace

View File

@ -44,7 +44,7 @@ TypePtr BitwiseXorInferType(const PrimitivePtr &prim, const std::vector<Abstract
std::map<std::string, TypePtr> types;
(void)types.emplace("x", input_args[0]->BuildType());
(void)types.emplace("y", input_args[1]->BuildType());
const std::set<TypePtr> valid_types = {kInt8, kInt16, kInt32, kInt64, kUInt8, kUInt16, kUInt32, kUInt64};
const std::set<TypePtr> valid_types = {kBool, kInt8, kInt16, kInt32, kInt64, kUInt8, kUInt16, kUInt32, kUInt64};
return CheckAndConvertUtils::CheckTensorTypeSame(types, valid_types, prim->name());
}
} // namespace

View File

@ -301,22 +301,16 @@ class Tensor(Tensor_):
return tensor_operator_registry.get('__add__')(self, other)
def __and__(self, other):
if Tensor._use_logical_kernel(self, other):
return tensor_operator_registry.get('logical_and')(self, other)
if isinstance(other, (int, bool, float, Tensor)):
return tensor_operator_registry.get('bitwise_and')(self, other)
raise TypeError("Unsupported operand type(s) for &: 'Tensor' and '{}'".format(type(other)))
def __xor__(self, other):
if Tensor._use_logical_kernel(self, other):
return tensor_operator_registry.get('logical_xor')(self, other)
if isinstance(other, (int, bool, float, Tensor)):
return tensor_operator_registry.get('bitwise_xor')(self, other)
raise TypeError("Unsupported operand type(s) for ^: 'Tensor' and '{}'".format(type(other)))
def __or__(self, other):
if Tensor._use_logical_kernel(self, other):
return tensor_operator_registry.get('logical_or')(self, other)
if isinstance(other, (int, bool, float, Tensor)):
return tensor_operator_registry.get('bitwise_or')(self, other)
raise TypeError("Unsupported operand type(s) for |: 'Tensor' and '{}'".format(type(other)))
@ -513,19 +507,6 @@ class Tensor(Tensor_):
return Tensor(Tensor_.from_numpy(array))
@staticmethod
def _use_logical_kernel(me, other) -> bool:
"""
Decide to use logical kernel or bitwise kernel for &|^ operations.
If self or other is bool or bool tensor, then return true, use logical kernel,
else false to use bitwise kernel.
"""
def _is_bool_or_bool_tensor(data):
return isinstance(data, bool) or (isinstance(data, Tensor) and data.dtype == mstype.bool_)
if _is_bool_or_bool_tensor(me) and _is_bool_or_bool_tensor(other):
return True
return False
def ndimension(self):
r"""
Alias for :func:`mindspore.Tensor.ndim`.

View File

@ -18,6 +18,7 @@ import pytest
import mindspore.context as context
import mindspore.nn as nn
import mindspore as ms
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops import functional as F
@ -37,18 +38,23 @@ class OpNetWrapper(nn.Cell):
return self.op(*inputs)
suport_type_list = [np.bool_, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64]
mode_list = [context.PYNATIVE_MODE, context.GRAPH_MODE]
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
def test_bitwise_and(shape, dtype):
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode_cpu', mode_list)
def test_bitwise_and(shape, dtype, mode_cpu):
"""
Feature: BitwiseAnd cpu kernel.
Description: test the rightness of BitwiseAnd cpu kernel.
Expectation: Success.
"""
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
context.set_context(mode=mode_cpu, device_target='CPU')
op = P.BitwiseAnd()
op_wrapper = OpNetWrapper(op)
@ -67,14 +73,15 @@ def test_bitwise_and(shape, dtype):
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
def test_bitwise_or(shape, dtype):
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode_cpu', mode_list)
def test_bitwise_or(shape, dtype, mode_cpu):
"""
Feature: BitwiseOr cpu kernel.
Description: test the rightness of BitwiseOr cpu kernel.
Expectation: Success.
"""
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
context.set_context(mode=mode_cpu, device_target='CPU')
op = P.BitwiseOr()
op_wrapper = OpNetWrapper(op)
@ -93,14 +100,15 @@ def test_bitwise_or(shape, dtype):
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
def test_bitwise_xor(shape, dtype):
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode_cpu', mode_list)
def test_bitwise_xor(shape, dtype, mode_cpu):
"""
Feature: BitwiseXor cpu kernel.
Description: test the rightness of BitwiseXor cpu kernel.
Expectation: Success.
"""
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
context.set_context(mode=mode_cpu, device_target='CPU')
op = P.BitwiseXor()
op_wrapper = OpNetWrapper(op)
@ -119,7 +127,7 @@ def test_bitwise_xor(shape, dtype):
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('op', [P.BitwiseAnd(), P.BitwiseOr(), P.BitwiseXor()])
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
def test_bitwise_vmap(op, dtype):
"""
Feature: Bitwise cpu kernel.
@ -151,7 +159,7 @@ def test_bitwise_vmap(op, dtype):
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
def test_bitwise_and_tensor_interface_operator(dtype, mode, shape):
@ -173,7 +181,7 @@ def test_bitwise_and_tensor_interface_operator(dtype, mode, shape):
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
def test_bitwise_or_tensor_interface_operator(dtype, mode, shape):
@ -195,7 +203,7 @@ def test_bitwise_or_tensor_interface_operator(dtype, mode, shape):
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
def test_bitwise_xor_tensor_interface_operator(dtype, mode, shape):
@ -217,7 +225,7 @@ def test_bitwise_xor_tensor_interface_operator(dtype, mode, shape):
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
def test_bitwise_and_tensor_interface(dtype, mode, shape):
@ -239,7 +247,7 @@ def test_bitwise_and_tensor_interface(dtype, mode, shape):
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
def test_bitwise_or_tensor_interface(dtype, mode, shape):
@ -261,7 +269,7 @@ def test_bitwise_or_tensor_interface(dtype, mode, shape):
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE])
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
def test_bitwise_xor_tensor_interface(dtype, mode, shape):
@ -285,7 +293,7 @@ def test_bitwise_xor_tensor_interface(dtype, mode, shape):
@pytest.mark.env_onecard
@pytest.mark.parametrize('xshape', [(2, 3)])
@pytest.mark.parametrize('yshape', [(1, 1), (1, 3), (2, 1)])
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
def test_bitwise_and_broadcast(xshape, yshape, dtype):
"""
Feature: BitwiseAnd cpu kernel.
@ -312,7 +320,7 @@ def test_bitwise_and_broadcast(xshape, yshape, dtype):
@pytest.mark.env_onecard
@pytest.mark.parametrize('xshape', [(2, 3)])
@pytest.mark.parametrize('yshape', [(1, 1), (1, 3), (2, 1)])
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
def test_bitwise_or_broadcast(xshape, yshape, dtype):
"""
Feature: BitwiseOr cpu kernel.
@ -339,7 +347,7 @@ def test_bitwise_or_broadcast(xshape, yshape, dtype):
@pytest.mark.env_onecard
@pytest.mark.parametrize('xshape', [(2, 3)])
@pytest.mark.parametrize('yshape', [(1, 1), (1, 3), (2, 1)])
@pytest.mark.parametrize('dtype', [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64])
@pytest.mark.parametrize('dtype', suport_type_list)
def test_bitwise_xor_broadcast(xshape, yshape, dtype):
"""
Feature: BitwiseXor cpu kernel.
@ -359,3 +367,46 @@ def test_bitwise_xor_broadcast(xshape, yshape, dtype):
assert np.allclose(outputs.asnumpy(), expect)
assert np.allclose(outputs_functional.asnumpy(), expect)
class NetBitwise(nn.Cell):
"""NetBitwise"""
def construct(self, input_x, input_y):
"""construct"""
out_and = input_x & input_y
out_or = input_x | input_y
out_xor = input_x ^ input_y
return out_and, out_or, out_xor
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode_cpu', mode_list)
def test_bitwise_bool(mode_cpu):
"""
Feature: Bitwise cpu kernel.
Description: test the rightness of Bitwise cpu kernel tensor operations.
Expectation: Success.
"""
context.set_context(mode=mode_cpu, device_target='CPU')
input_x = ms.Tensor([True, False], dtype=ms.bool_)
input_y = ms.Tensor([True, True], dtype=ms.bool_)
net = NetBitwise()
out = net(input_x, input_y)
expect_and = np.array([True, False])
expect_or = np.array([True, True])
expect_xor = np.array([False, True])
assert np.allclose(out[0].asnumpy(), expect_and)
assert np.allclose(out[1].asnumpy(), expect_or)
assert np.allclose(out[2].asnumpy(), expect_xor)
res_and = input_x & input_y
res_or = input_x | input_y
res_xor = input_x ^ input_y
assert np.allclose(res_and.asnumpy(), expect_and)
assert np.allclose(res_or.asnumpy(), expect_or)
assert np.allclose(res_xor.asnumpy(), expect_xor)

View File

@ -0,0 +1,164 @@
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
import mindspore as ms
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.ops import functional as F
class OpNetWrapperBitwise(nn.Cell):
"""OpNetWrapperBitwise"""
def __init__(self, op):
"""__init__"""
super(OpNetWrapperBitwise, self).__init__()
self.op = op
def construct(self, *inputs):
"""construct"""
return self.op(*inputs)
suport_type_list = [np.bool_, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64]
mode_list = [context.PYNATIVE_MODE, context.GRAPH_MODE]
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode', mode_list)
def test_bitwise_and(shape, dtype, mode):
"""
Feature: BitwiseAnd gpu kernel.
Description: test the rightness of BitwiseAnd gpu kernel.
Expectation: Success.
"""
context.set_context(mode=mode, device_target='GPU')
op = P.BitwiseAnd()
op_wrapper = OpNetWrapperBitwise(op)
prop = 100 if np.random.random() > 0.5 else -100
x_np = (np.random.randn(*shape) * prop).astype(dtype)
y_np = (np.random.randn(*shape) * prop).astype(dtype)
outputs = op_wrapper(Tensor(x_np), Tensor(y_np))
outputs_func = F.bitwise_and(Tensor(x_np), Tensor(y_np))
expect = np.bitwise_and(x_np, y_np)
assert np.allclose(outputs.asnumpy(), expect)
assert np.allclose(outputs_func.asnumpy(), expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode', mode_list)
def test_bitwise_or(shape, dtype, mode):
"""
Feature: BitwiseOr gpu kernel.
Description: test the rightness of BitwiseOr gpu kernel.
Expectation: Success.
"""
context.set_context(mode=mode, device_target='GPU')
op = P.BitwiseOr()
op_wrapper = OpNetWrapperBitwise(op)
prop = 100 if np.random.random() > 0.5 else -100
x_np = (np.random.randn(*shape) * prop).astype(dtype)
y_np = (np.random.randn(*shape) * prop).astype(dtype)
outputs = op_wrapper(Tensor(x_np), Tensor(y_np))
outputs_func = F.bitwise_or(Tensor(x_np), Tensor(y_np))
expect = np.bitwise_or(x_np, y_np)
assert np.allclose(outputs.asnumpy(), expect)
assert np.allclose(outputs_func.asnumpy(), expect)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)])
@pytest.mark.parametrize('dtype', suport_type_list)
@pytest.mark.parametrize('mode', mode_list)
def test_bitwise_xor(shape, dtype, mode):
"""
Feature: BitwiseXor gpu kernel.
Description: test the rightness of BitwiseXor gpu kernel.
Expectation: Success.
"""
context.set_context(mode=mode, device_target='GPU')
op = P.BitwiseXor()
op_wrapper = OpNetWrapperBitwise(op)
prop = 100 if np.random.random() > 0.5 else -100
x_np = (np.random.randn(*shape) * prop).astype(dtype)
y_np = (np.random.randn(*shape) * prop).astype(dtype)
outputs = op_wrapper(Tensor(x_np), Tensor(y_np))
outputs_func = F.bitwise_xor(Tensor(x_np), Tensor(y_np))
expect = np.bitwise_xor(x_np, y_np)
assert np.allclose(outputs.asnumpy(), expect)
assert np.allclose(outputs_func.asnumpy(), expect)
class NetBitwiseGPU(nn.Cell):
"""NetBitwiseGPU"""
def construct(self, input_x, input_y):
"""construct"""
out_and = input_x & input_y
out_or = input_x | input_y
out_xor = input_x ^ input_y
return out_and, out_or, out_xor
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', mode_list)
def test_bitwise_bool(mode):
"""
Feature: Bitwise gpu kernel.
Description: test the rightness of Bitwise cpu kernel tensor operations.
Expectation: Success.
"""
context.set_context(mode=mode, device_target='CPU')
input_x = ms.Tensor([True, False], dtype=ms.bool_)
input_y = ms.Tensor([True, True], dtype=ms.bool_)
net = NetBitwiseGPU()
out = net(input_x, input_y)
expect_and_gpu = np.array([True, False])
expect_or_gpu = np.array([True, True])
expect_xor_gpu = np.array([False, True])
assert np.allclose(out[0].asnumpy(), expect_and_gpu)
assert np.allclose(out[1].asnumpy(), expect_or_gpu)
assert np.allclose(out[2].asnumpy(), expect_xor_gpu)
res_and = input_x & input_y
res_or = input_x | input_y
res_xor = input_x ^ input_y
assert np.allclose(res_and.asnumpy(), expect_and_gpu)
assert np.allclose(res_or.asnumpy(), expect_or_gpu)
assert np.allclose(res_xor.asnumpy(), expect_xor_gpu)