forked from mindspore-Ecosystem/mindspore
Move model_zoo.resnet.py
This commit is contained in:
parent
b4e3715897
commit
45dbc8bf04
|
@ -210,7 +210,6 @@ install(
|
|||
${CMAKE_SOURCE_DIR}/mindspore/parallel
|
||||
${CMAKE_SOURCE_DIR}/mindspore/mindrecord
|
||||
${CMAKE_SOURCE_DIR}/mindspore/train
|
||||
${CMAKE_SOURCE_DIR}/mindspore/model_zoo
|
||||
${CMAKE_SOURCE_DIR}/mindspore/common
|
||||
${CMAKE_SOURCE_DIR}/mindspore/ops
|
||||
${CMAKE_SOURCE_DIR}/mindspore/communication
|
||||
|
|
0
mindspore/model_zoo/resnet.py → tests/st/networks/models/resnet50/src/resnet.py
Executable file → Normal file
0
mindspore/model_zoo/resnet.py → tests/st/networks/models/resnet50/src/resnet.py
Executable file → Normal file
|
@ -27,10 +27,10 @@ from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
|||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.model_zoo.resnet import resnet50
|
||||
import mindspore.nn as nn
|
||||
import mindspore.dataset as ds
|
||||
|
||||
from tests.st.networks.models.resnet50.src.resnet import resnet50
|
||||
from tests.st.networks.models.resnet50.src.dataset import create_dataset
|
||||
from tests.st.networks.models.resnet50.src.lr_generator import get_learning_rate
|
||||
from tests.st.networks.models.resnet50.src.config import config
|
||||
|
|
|
@ -17,8 +17,8 @@ import numpy as np
|
|||
|
||||
import mindspore as ms
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.model_zoo.resnet import resnet50
|
||||
from mindspore.ops import Primitive
|
||||
from tests.ut.python.model.resnet import resnet50
|
||||
|
||||
scala_add = Primitive('scalar_add')
|
||||
|
||||
|
|
|
@ -22,9 +22,9 @@ from mindspore.common import dtype
|
|||
from mindspore.common.api import ms_function, _executor
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.model_zoo.resnet import resnet50
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.train.model import Model
|
||||
from tests.ut.python.model.resnet import resnet50
|
||||
|
||||
|
||||
def test_high_order_function(a):
|
||||
|
|
|
@ -0,0 +1,282 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""ResNet."""
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.tensor import Tensor
|
||||
|
||||
|
||||
def _weight_variable(shape, factor=0.01):
|
||||
init_value = np.random.randn(*shape).astype(np.float32) * factor
|
||||
return Tensor(init_value)
|
||||
|
||||
|
||||
def _conv3x3(in_channel, out_channel, stride=1):
|
||||
weight_shape = (out_channel, in_channel, 3, 3)
|
||||
weight = _weight_variable(weight_shape)
|
||||
return nn.Conv2d(in_channel, out_channel,
|
||||
kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
||||
|
||||
|
||||
def _conv1x1(in_channel, out_channel, stride=1):
|
||||
weight_shape = (out_channel, in_channel, 1, 1)
|
||||
weight = _weight_variable(weight_shape)
|
||||
return nn.Conv2d(in_channel, out_channel,
|
||||
kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
||||
|
||||
|
||||
def _conv7x7(in_channel, out_channel, stride=1):
|
||||
weight_shape = (out_channel, in_channel, 7, 7)
|
||||
weight = _weight_variable(weight_shape)
|
||||
return nn.Conv2d(in_channel, out_channel,
|
||||
kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
||||
|
||||
|
||||
def _bn(channel):
|
||||
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
|
||||
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
||||
|
||||
|
||||
def _bn_last(channel):
|
||||
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
|
||||
gamma_init=0, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
||||
|
||||
|
||||
def _fc(in_channel, out_channel):
|
||||
weight_shape = (out_channel, in_channel)
|
||||
weight = _weight_variable(weight_shape)
|
||||
return nn.Dense(in_channel, out_channel, has_bias=True, weight_init=weight, bias_init=0)
|
||||
|
||||
|
||||
class ResidualBlock(nn.Cell):
|
||||
"""
|
||||
ResNet V1 residual block definition.
|
||||
|
||||
Args:
|
||||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> ResidualBlock(3, 256, stride=2)
|
||||
"""
|
||||
expansion = 4
|
||||
|
||||
def __init__(self,
|
||||
in_channel,
|
||||
out_channel,
|
||||
stride=1):
|
||||
super(ResidualBlock, self).__init__()
|
||||
|
||||
channel = out_channel // self.expansion
|
||||
self.conv1 = _conv1x1(in_channel, channel, stride=1)
|
||||
self.bn1 = _bn(channel)
|
||||
|
||||
self.conv2 = _conv3x3(channel, channel, stride=stride)
|
||||
self.bn2 = _bn(channel)
|
||||
|
||||
self.conv3 = _conv1x1(channel, out_channel, stride=1)
|
||||
self.bn3 = _bn_last(out_channel)
|
||||
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
self.down_sample = False
|
||||
|
||||
if stride != 1 or in_channel != out_channel:
|
||||
self.down_sample = True
|
||||
self.down_sample_layer = None
|
||||
|
||||
if self.down_sample:
|
||||
self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride),
|
||||
_bn(out_channel)])
|
||||
self.add = P.TensorAdd()
|
||||
|
||||
def construct(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.down_sample:
|
||||
identity = self.down_sample_layer(identity)
|
||||
|
||||
out = self.add(out, identity)
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Cell):
|
||||
"""
|
||||
ResNet architecture.
|
||||
|
||||
Args:
|
||||
block (Cell): Block for network.
|
||||
layer_nums (list): Numbers of block in different layers.
|
||||
in_channels (list): Input channel in each layer.
|
||||
out_channels (list): Output channel in each layer.
|
||||
strides (list): Stride size in each layer.
|
||||
num_classes (int): The number of classes that the training images are belonging to.
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
|
||||
Examples:
|
||||
>>> ResNet(ResidualBlock,
|
||||
>>> [3, 4, 6, 3],
|
||||
>>> [64, 256, 512, 1024],
|
||||
>>> [256, 512, 1024, 2048],
|
||||
>>> [1, 2, 2, 2],
|
||||
>>> 10)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
block,
|
||||
layer_nums,
|
||||
in_channels,
|
||||
out_channels,
|
||||
strides,
|
||||
num_classes):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
|
||||
raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!")
|
||||
|
||||
self.conv1 = _conv7x7(3, 64, stride=2)
|
||||
self.bn1 = _bn(64)
|
||||
self.relu = P.ReLU()
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
||||
|
||||
self.layer1 = self._make_layer(block,
|
||||
layer_nums[0],
|
||||
in_channel=in_channels[0],
|
||||
out_channel=out_channels[0],
|
||||
stride=strides[0])
|
||||
self.layer2 = self._make_layer(block,
|
||||
layer_nums[1],
|
||||
in_channel=in_channels[1],
|
||||
out_channel=out_channels[1],
|
||||
stride=strides[1])
|
||||
self.layer3 = self._make_layer(block,
|
||||
layer_nums[2],
|
||||
in_channel=in_channels[2],
|
||||
out_channel=out_channels[2],
|
||||
stride=strides[2])
|
||||
self.layer4 = self._make_layer(block,
|
||||
layer_nums[3],
|
||||
in_channel=in_channels[3],
|
||||
out_channel=out_channels[3],
|
||||
stride=strides[3])
|
||||
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.flatten = nn.Flatten()
|
||||
self.end_point = _fc(out_channels[3], num_classes)
|
||||
|
||||
def _make_layer(self, block, layer_num, in_channel, out_channel, stride):
|
||||
"""
|
||||
Make stage network of ResNet.
|
||||
|
||||
Args:
|
||||
block (Cell): Resnet block.
|
||||
layer_num (int): Layer number.
|
||||
in_channel (int): Input channel.
|
||||
out_channel (int): Output channel.
|
||||
stride (int): Stride size for the first convolutional layer.
|
||||
|
||||
Returns:
|
||||
SequentialCell, the output layer.
|
||||
|
||||
Examples:
|
||||
>>> _make_layer(ResidualBlock, 3, 128, 256, 2)
|
||||
"""
|
||||
layers = []
|
||||
|
||||
resnet_block = block(in_channel, out_channel, stride=stride)
|
||||
layers.append(resnet_block)
|
||||
|
||||
for _ in range(1, layer_num):
|
||||
resnet_block = block(out_channel, out_channel, stride=1)
|
||||
layers.append(resnet_block)
|
||||
|
||||
return nn.SequentialCell(layers)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
c1 = self.maxpool(x)
|
||||
|
||||
c2 = self.layer1(c1)
|
||||
c3 = self.layer2(c2)
|
||||
c4 = self.layer3(c3)
|
||||
c5 = self.layer4(c4)
|
||||
|
||||
out = self.mean(c5, (2, 3))
|
||||
out = self.flatten(out)
|
||||
out = self.end_point(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def resnet50(class_num=10):
|
||||
"""
|
||||
Get ResNet50 neural network.
|
||||
|
||||
Args:
|
||||
class_num (int): Class number.
|
||||
|
||||
Returns:
|
||||
Cell, cell instance of ResNet50 neural network.
|
||||
|
||||
Examples:
|
||||
>>> net = resnet50(10)
|
||||
"""
|
||||
return ResNet(ResidualBlock,
|
||||
[3, 4, 6, 3],
|
||||
[64, 256, 512, 1024],
|
||||
[256, 512, 1024, 2048],
|
||||
[1, 2, 2, 2],
|
||||
class_num)
|
||||
|
||||
def resnet101(class_num=1001):
|
||||
"""
|
||||
Get ResNet101 neural network.
|
||||
|
||||
Args:
|
||||
class_num (int): Class number.
|
||||
|
||||
Returns:
|
||||
Cell, cell instance of ResNet101 neural network.
|
||||
|
||||
Examples:
|
||||
>>> net = resnet101(1001)
|
||||
"""
|
||||
return ResNet(ResidualBlock,
|
||||
[3, 4, 23, 3],
|
||||
[64, 256, 512, 1024],
|
||||
[256, 512, 1024, 2048],
|
||||
[1, 2, 2, 2],
|
||||
class_num)
|
|
@ -22,10 +22,10 @@ from mindspore import amp
|
|||
from mindspore import nn
|
||||
from mindspore.train import Model, ParallelMode
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.model_zoo.resnet import resnet50
|
||||
from ....dataset_mock import MindData
|
||||
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||
from mindspore.communication.management import init
|
||||
from tests.ut.python.model.resnet import resnet50
|
||||
|
||||
def setup_module(module):
|
||||
_ = module
|
||||
|
|
Loading…
Reference in New Issue