forked from mindspore-Ecosystem/mindspore
!4777 Add test cases for uniform ops on GPU
Merge pull request !4777 from peixu_ren/custom_gpu
This commit is contained in:
commit
454ae16335
|
@ -41,15 +41,3 @@ def test_net_1D():
|
|||
tminval, tmaxval = Tensor(minval, mstype.int32), Tensor(maxval, mstype.int32)
|
||||
output = net(tminval, tmaxval)
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
def test_net_ND():
|
||||
seed = 10
|
||||
shape = (3, 2, 1)
|
||||
minval = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.int32)
|
||||
maxval = np.array([10]).astype(np.int32)
|
||||
net = Net(shape, seed)
|
||||
tminval, tmaxval = Tensor(minval), Tensor(maxval)
|
||||
output = net(tminval, tmaxval)
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (3, 2, 2)
|
||||
|
|
|
@ -36,15 +36,3 @@ def test_net():
|
|||
net = Net(shape, seed=seed)
|
||||
output = net()
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
def test_net_ND():
|
||||
seed = 10
|
||||
shape = (3, 2, 1)
|
||||
a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.float32)
|
||||
b = np.array([10]).astype(np.float32)
|
||||
net = Net(shape, seed)
|
||||
ta, tb = Tensor(a), Tensor(b)
|
||||
output = net(ta, tb)
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (3, 2, 2)
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.ops import operations as P
|
||||
|
@ -31,7 +32,9 @@ class Net(nn.Cell):
|
|||
def construct(self):
|
||||
return self.stdnormal(self.shape)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_net():
|
||||
seed = 10
|
||||
seed2 = 10
|
||||
|
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0, seed2=0):
|
||||
super(Net, self).__init__()
|
||||
self.uniformint = P.UniformInt(seed=seed)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, a, b):
|
||||
return self.uniformint(self.shape, a, b)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_net_1D():
|
||||
seed = 10
|
||||
shape = (3, 2, 4)
|
||||
a = 1
|
||||
b = 5
|
||||
net = Net(shape, seed=seed)
|
||||
ta, tb = Tensor(a, mstype.int32), Tensor(b, mstype.int32)
|
||||
output = net(ta, tb)
|
||||
assert output.shape == (3, 2, 4)
|
|
@ -12,32 +12,30 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
def __init__(self, shape, seed=0, seed2=0):
|
||||
super(Net, self).__init__()
|
||||
self.uniformreal = P.UniformReal(seed=seed)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, minval, maxval):
|
||||
return self.uniformreal(self.shape, minval, maxval)
|
||||
def construct(self):
|
||||
return self.uniformreal(self.shape)
|
||||
|
||||
|
||||
def test_net_1D():
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_net():
|
||||
seed = 10
|
||||
shape = (3, 2, 4)
|
||||
minval = 0.0
|
||||
maxval = 1.0
|
||||
net = Net(shape, seed)
|
||||
tminval, tmaxval = Tensor(minval, mstype.float32), Tensor(maxval, mstype.float32)
|
||||
output = net(tminval, tmaxval)
|
||||
print(output.asnumpy())
|
||||
net = Net(shape, seed=seed)
|
||||
output = net()
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
|
Loading…
Reference in New Issue