!8930 Add Jni code for integration

From: @ezphlow
Reviewed-by: @liucunwei,@jonyguo
Signed-off-by: @liucunwei
This commit is contained in:
mindspore-ci-bot 2020-11-25 20:24:57 +08:00 committed by Gitee
commit 44601522da
10 changed files with 569 additions and 33 deletions

View File

@ -225,20 +225,21 @@ Status AlbumOp::WorkerEntry(int32_t worker_id) {
// Only support JPEG/PNG/GIF/BMP
// Optimization: Could take in a tensor
Status AlbumOp::CheckImageType(const std::string &file_name, bool *valid) {
// This function does not return status because we want to just skip bad input, not crash
bool AlbumOp::CheckImageType(const std::string &file_name, bool *valid) {
std::ifstream file_handle;
constexpr int read_num = 3;
*valid = false;
file_handle.open(file_name, std::ios::binary | std::ios::in);
if (!file_handle.is_open()) {
RETURN_STATUS_UNEXPECTED("Invalid file, can not open image file: " + file_name);
return false;
}
unsigned char file_type[read_num];
(void)file_handle.read(reinterpret_cast<char *>(file_type), read_num);
if (file_handle.fail()) {
file_handle.close();
RETURN_STATUS_UNEXPECTED("Invalid data, failed to read image file: " + file_name);
return false;
}
file_handle.close();
if (file_type[0] == 0xff && file_type[1] == 0xd8 && file_type[2] == 0xff) {
@ -246,17 +247,8 @@ Status AlbumOp::CheckImageType(const std::string &file_name, bool *valid) {
// JPEG with EXIF stats with \xff\xd8\xff\xe1
// Use \xff\xd8\xff to cover both.
*valid = true;
} else if (file_type[0] == 0x89 && file_type[1] == 0x50 && file_type[2] == 0x4e) {
// It's a PNG
*valid = true;
} else if (file_type[0] == 0x47 && file_type[1] == 0x49 && file_type[2] == 0x46) {
// It's a GIF
*valid = true;
} else if (file_type[0] == 0x42 && file_type[1] == 0x4d) {
// It's a BMP
*valid = true;
}
return Status::OK();
return true;
}
Status AlbumOp::LoadImageTensor(const std::string &image_file_path, uint32_t col_num, TensorRow *row) {
@ -264,22 +256,44 @@ Status AlbumOp::LoadImageTensor(const std::string &image_file_path, uint32_t col
std::ifstream fs;
fs.open(image_file_path, std::ios::binary | std::ios::in);
if (fs.fail()) {
MS_LOG(INFO) << "Image file not found:" << image_file_path << ".";
MS_LOG(WARNING) << "File not found:" << image_file_path << ".";
// If file doesn't exist, we don't flag this as error in input check, simply push back empty tensor
RETURN_STATUS_UNEXPECTED("Invalid file_path, failed to read file: " + image_file_path);
RETURN_IF_NOT_OK(LoadEmptyTensor(col_num, row));
return Status::OK();
}
// Hack logic to replace png images with empty tensor
Path file(image_file_path);
std::set<std::string> png_ext = {".png", ".PNG"};
if (png_ext.find(file.Extension()) != png_ext.end()) {
// load empty tensor since image is not jpg
MS_LOG(INFO) << "PNG!" << image_file_path << ".";
RETURN_IF_NOT_OK(LoadEmptyTensor(col_num, row));
return Status::OK();
}
// treat bin files separately
std::set<std::string> bin_ext = {".bin", ".BIN"};
if (bin_ext.find(file.Extension()) != bin_ext.end()) {
// load empty tensor since image is not jpg
MS_LOG(INFO) << "Bin file found" << image_file_path << ".";
RETURN_IF_NOT_OK(Tensor::CreateFromFile(image_file_path, &image));
row->push_back(std::move(image));
return Status::OK();
}
MS_LOG(INFO) << "Image file found: " << image_file_path << ".";
// check that the file is an image before decoding
bool valid = false;
RETURN_IF_NOT_OK(CheckImageType(image_file_path, &valid));
bool check_success = CheckImageType(image_file_path, &valid);
if (!check_success || !valid) {
RETURN_IF_NOT_OK(LoadEmptyTensor(col_num, row));
return Status::OK();
}
// if it is a jpeg image, load and try to decode
RETURN_IF_NOT_OK(Tensor::CreateFromFile(image_file_path, &image));
if (decode_ && valid) {
Status rc = Decode(image, &image);
if (rc.IsError()) {
std::string err = "Invalid data, failed to decode image: " + image_file_path;
RETURN_STATUS_UNEXPECTED(err);
RETURN_IF_NOT_OK(LoadEmptyTensor(col_num, row));
return Status::OK();
}
}
row->push_back(std::move(image));

View File

@ -189,8 +189,8 @@ class AlbumOp : public ParallelOp, public RandomAccessOp {
/// \brief Check if image ia valid.Only support JPEG/PNG/GIF/BMP
/// This function could be optimized to return the tensor to reduce open/closing files
/// \return Status - The error code returned
Status CheckImageType(const std::string &file_name, bool *valid);
/// \return bool - if file is bad then return false
bool CheckImageType(const std::string &file_name, bool *valid);
// Base-class override for NodePass visitor acceptor.
// @param p - Pointer to the NodePass to be accepted.

View File

@ -429,10 +429,11 @@ Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output
bool ret = Pad(lite_mat_rgb, lite_mat_pad, pad_top, pad_bottom, pad_left, pad_right,
PaddBorderType::PADD_BORDER_CONSTANT, fill_r, fill_g, fill_b);
CHECK_FAIL_RETURN_UNEXPECTED(ret, "Pad failed in lite cv");
// new shape for output tensor
TensorShape new_shape = TensorShape({lite_mat_pad.height_, lite_mat_pad.width_, input->shape()[2]});
std::shared_ptr<Tensor> output_tensor;
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(input->shape(), input->type(),
static_cast<uchar *>(lite_mat_pad.data_ptr_), &output_tensor));
RETURN_IF_NOT_OK(
Tensor::CreateFromMemory(new_shape, input->type(), static_cast<uchar *>(lite_mat_pad.data_ptr_), &output_tensor));
*output = output_tensor;
} catch (std::runtime_error &e) {
RETURN_STATUS_UNEXPECTED("Error in image Pad.");

View File

@ -175,7 +175,7 @@ if (BUILD_MINDDATA STREQUAL "full")
"${MINDDATA_DIR}/kernels/image/cut_out_op.cc"
"${MINDDATA_DIR}/kernels/image/cutmix_batch_op.cc"
"${MINDDATA_DIR}/kernels/image/equalize_op.cc"
"${MINDDATA_DIR}/kernels/image/hwc_to_chw_op.cc"
"${MINDDATA_DIR}/kernels/image/hwc_to_chw_op.cc"
"${MINDDATA_DIR}/kernels/image/image_utils.cc"
"${MINDDATA_DIR}/kernels/image/invert_op.cc"
"${MINDDATA_DIR}/kernels/image/math_utils.cc"
@ -237,9 +237,9 @@ if (BUILD_MINDDATA STREQUAL "full")
)
include_directories("${CMAKE_BINARY_DIR}/minddata/dataset/engine/cache")
# if (BUILD_MINDDATA_EXAMPLE AND (PLATFORM_ARM32 OR PLATFORM_ARM64))
# set(MINDDATA_EXAMPLE_SRC ${CMAKE_CURRENT_SOURCE_DIR}/example/jni-example.cc)
# endif ()
if (BUILD_MINDDATA_EXAMPLE AND (PLATFORM_ARM32 OR PLATFORM_ARM64))
set(MINDDATA_TODAPI_SRC ${CMAKE_CURRENT_SOURCE_DIR}/wrapper/MDToDApi.cc)
endif ()
add_library(minddata-lite SHARED
${MINDDATA_API_SRC_FILES}

View File

@ -0,0 +1,451 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "MDToDApi.h"
#include <string>
#include <fstream>
#include <iostream>
#include <memory>
#include <unordered_map>
#include <utility>
#include <vector>
#include "minddata/dataset/include/datasets.h"
#include "minddata/dataset/include/execute.h"
#include "minddata/dataset/util/path.h"
#include "minddata/dataset/include/vision.h"
#include "minddata/dataset/util/data_helper.h"
#if defined(__ANDROID__) || defined(ANDROID)
#include <android/log.h>
#include <android/asset_manager.h>
#endif
using mindspore::dataset::Path;
using mindspore::dataset::Tensor;
using mindspore::dataset;
using mindspore::LogStream;
using mindspore::MsLogLevel::DEBUG;
using mindspore::MsLogLevel::ERROR;
using mindspore::MsLogLevel::INFO;
using mindspore::dataset::BorderType;
using mindspore::dataset::InterpolationMode;
using mindspore::dataset::Status;
class MDToDApi {
public:
std::shared_ptr<Dataset> _ds;
std::shared_ptr<Iterator> _iter;
std::vector<std::shared_ptr<TensorOperation>> _augs;
std::string _storage_folder;
std::string _folder_path;
bool _hasBatch;
int64_t _file_id;
MDToDApi() : _ds(nullptr), _iter(nullptr), _augs({}), _storage_folder(""), _file_id(-1), _hasBatch(false) {
MS_LOG(WARNING) << "MDToDAPI Call constructor";
}
~MDToDApi() {
MS_LOG(WARNING) << "MDToDAPI Call destructor";
_augs.clear();
_ds = nullptr;
_iter = nullptr;
}
};
std::vector<std::string> MDToDBuffToVector(MDToDBuff_t StrBuff) {
std::vector<std::string> strVector;
if (StrBuff.DataSize > 0) {
const char *p = reinterpret_cast<char *>(StrBuff.Buff);
do {
strVector.push_back(std::string(p));
p += strVector.back().size() + 1;
} while (p < reinterpret_cast<char *>(StrBuff.Buff) + StrBuff.DataSize);
}
return strVector;
}
extern "C" int MDToDApi_pathTest(const char *path) {
Path f(path);
MS_LOG(WARNING) << f.Exists() << f.IsDirectory() << f.ParentPath();
// Print out the first few items in the directory
auto dir_it = Path::DirIterator::OpenDirectory(&f);
MS_LOG(WARNING) << dir_it.get();
int i = 0;
while (dir_it->hasNext()) {
Path v = dir_it->next();
MS_LOG(WARNING) << v.toString() << "\n";
i++;
if (i > 5) break;
}
return 0;
}
extern "C" MDToDApi *MDToDApi_createPipeLine(MDToDConf_t MDConf) {
MS_LOG(WARNING) << "Start createPipeLine";
std::string folder_path(MDConf.pFolderPath);
std::string schema_file(MDConf.pSchemFile);
std::vector<std::string> column_names = MDToDBuffToVector(MDConf.columnsToReadBuff);
if (std::find(column_names.begin(), column_names.end(), "id") == column_names.end()) {
MS_LOG(WARNING) << "Column id not foud adding it ";
column_names.push_back("id");
}
std::vector<std::shared_ptr<TensorOperation>> mapOperations;
if (std::find(column_names.begin(), column_names.end(), "image") != column_names.end()) {
MS_LOG(WARNING) << "Found column image create map with:";
MS_LOG(WARNING) << "resize: { " << MDConf.ResizeSizeWH[0] << ", " << MDConf.ResizeSizeWH[1] << " }";
MS_LOG(WARNING) << "crop: { " << MDConf.CropSizeWH[0] << ", " << MDConf.CropSizeWH[1] << " }";
MS_LOG(WARNING) << "MEAN: { " << MDConf.MEAN[0] << ", " << MDConf.MEAN[1] << ", " << MDConf.MEAN[2] << " }";
MS_LOG(WARNING) << "STD: { " << MDConf.STD[0] << ", " << MDConf.STD[1] << ", " << MDConf.STD[2] << " }";
if ((MDConf.ResizeSizeWH[0] != 0) && (MDConf.ResizeSizeWH[1] != 0)) {
std::vector<int> Resize(MDConf.ResizeSizeWH, MDConf.ResizeSizeWH + 2);
std::shared_ptr<TensorOperation> resize_op = vision::Resize(Resize);
assert(resize_op != nullptr);
MS_LOG(WARNING) << "Push back resize";
mapOperations.push_back(resize_op);
}
if ((MDConf.CropSizeWH[0] != 0) && (MDConf.CropSizeWH[1] != 0)) {
std::vector<int> Crop(MDConf.CropSizeWH, MDConf.CropSizeWH + 2);
std::shared_ptr<TensorOperation> center_crop_op = vision::CenterCrop(Crop);
assert(center_crop_op != nullptr);
MS_LOG(WARNING) << "Push back crop";
mapOperations.push_back(center_crop_op);
}
}
std::shared_ptr<Dataset> ds = nullptr;
MS_LOG(INFO) << "Read id =" << MDConf.fileid << " (-1) for all";
if (MDConf.fileid > -1) {
// read specific image using SequentialSampler
ds = Album(folder_path, schema_file, column_names, true, SequentialSampler(MDConf.fileid, 1L));
} else {
// Distributed sampler takes num_shards then shard_id
ds = Album(folder_path, schema_file, column_names, true, SequentialSampler());
}
ds = ds->SetNumWorkers(1);
assert(ds != nullptr);
// Create a Repeat operation on ds
int32_t repeat_num = 1;
ds = ds->Repeat(repeat_num);
assert(ds != nullptr);
// Create objects for the tensor ops
MS_LOG(INFO) << " Create pipline parameters";
MS_LOG(INFO) << "floder path: " << folder_path << " , schema json: " << schema_file;
MS_LOG(INFO) << "Reading columns:";
for (auto str : column_names) {
MS_LOG(INFO) << str << " ";
}
bool hasBatch = false;
// Create an iterator over the result of the above dataset
// This will trigger the creation of the Execution Tree and launch it.
std::shared_ptr<Iterator> iter = ds->CreateIterator();
if (nullptr == iter) {
MS_LOG(ERROR) << "Iterator creation failed";
return nullptr;
}
assert(iter != nullptr);
MDToDApi *pMDToDApi = new MDToDApi;
pMDToDApi->_ds = ds;
pMDToDApi->_iter = iter;
pMDToDApi->_augs = mapOperations;
pMDToDApi->_storage_folder = std::string(MDConf.pStoragePath);
pMDToDApi->_folder_path = folder_path;
pMDToDApi->_hasBatch = hasBatch;
return pMDToDApi;
}
template <typename T>
void MDBuffToVector(MDToDBuff_t MDBuff, std::vector<T> *vec) {
vec.clear();
if (MDBuff.DataSize > 0) {
int nofElements = MDBuff.DataSize / sizeof(T);
*vec.assign(reinterpret_cast<T *>(MDBuff.Buff), reinterpret_cast<T *>(MDBuff.Buff) + nofElements);
}
}
template <typename T>
void GetValue(std::unordered_map<std::string, std::shared_ptr<Tensor>> row, std::string columnName, T *o) {
auto column = row[columnName];
if (NULL != column) {
MS_LOG(INFO) << "Tensor " << columnName << " shape: " << column->shape() << " type: " << column->type()
<< " bytes: " << column->SizeInBytes();
column->GetItemAt<T>(o, {});
MS_LOG(INFO) << columnName << ": " << +*o;
} else {
MS_LOG(INFO) << "Tensor " << columnName << " Not found"
<< ".";
*o = 0;
}
}
void GetTensorToBuff(std::unordered_map<std::string, std::shared_ptr<Tensor>> row, std::string columnName,
bool hasBatch, MDToDBuff_t *resBuff) {
auto column = row[columnName];
resBuff->TensorSize[0] = resBuff->TensorSize[1] = resBuff->TensorSize[2] = resBuff->TensorSize[3] =
0; // Mark all dims do not exist in tensor
int firstDim = (hasBatch) ? 1 : 0;
if (NULL != column) {
MS_LOG(INFO) << "Tensor " << columnName << " shape: " << column->shape() << " type: " << column->type()
<< " bytes: " << column->SizeInBytes() << "nof elements: " << column->shape()[firstDim];
auto tesoreShape = column->shape().AsVector();
for (int ix = 0; ix < tesoreShape.size(); ix++) {
MS_LOG(INFO) << "Tensor " << columnName << " shape[" << ix << "] = " << tesoreShape[ix];
resBuff->TensorSize[ix] = tesoreShape[ix];
}
if (!hasBatch) {
for (int ix = 3; ix > 0; ix--) {
resBuff->TensorSize[ix] = resBuff->TensorSize[ix - 1];
}
resBuff->TensorSize[0] = 1;
}
if (column->shape()[firstDim] > 0) {
if (DataType::DE_STRING == column->type()) {
std::string str;
for (int ix = 0; ix < column->shape()[firstDim]; ix++) {
std::string_view strView;
if (hasBatch) {
column->GetItemAt(&strView, {0, ix});
} else {
column->GetItemAt(&strView, {ix});
}
MS_LOG(INFO) << "string " << columnName << "[" << ix << "]:" << strView << " (size: " << strView.size()
<< ")";
str.append(strView);
str.push_back('\0');
}
resBuff->DataSize = str.size();
errno_t ret = memcpy_s(resBuff->Buff, resBuff->MaxBuffSize, str.data(), resBuff->DataSize);
if (ret != 0) {
resBuff->DataSize = 0; // memcpy fail amount of data copied is 0
MS_LOG(ERROR) << "memcpy_s return: " << ret;
}
} else {
DataHelper dh;
resBuff->DataSize =
dh.DumpData(column->GetBuffer(), column->SizeInBytes(), resBuff->Buff, resBuff->MaxBuffSize);
}
MS_LOG(INFO) << columnName << " " << resBuff->DataSize
<< " bytesCopyed to buff (MaxBuffSize: " << resBuff->MaxBuffSize << ") ";
if (0 == resBuff->DataSize) {
MS_LOG(ERROR) << "Copy Failed!!!! " << columnName << " Too large"
<< "."; // memcpy failed
}
} else {
MS_LOG(INFO) << "Tensor " << columnName << " is empty (has size 0)";
}
} else {
MS_LOG(INFO) << "Tensor " << columnName << " was not read.";
}
}
extern "C" int MDToDApi_GetNext(MDToDApi *pMDToDApi, MDToDResult_t *results) {
MS_LOG(INFO) << "Start GetNext";
if (pMDToDApi == nullptr) {
MS_LOG(ERROR) << "GetNext called with nullptr. Abort";
assert(pMDToDApi != nullptr);
}
// Set defualt
results->fileid = -1;
results->embeddingBuff.DataSize = 0;
results->imageBuff.DataSize = 0;
MS_LOG(INFO) << "Start GetNext [1]" << pMDToDApi;
// get next row for dataset
std::unordered_map<std::string, std::shared_ptr<Tensor>> row;
if (pMDToDApi->_iter == nullptr) {
MS_LOG(ERROR) << "GetNext called with no iterator. abort";
return -1;
}
// create Execute functions, this replaces Map in Pipeline
pMDToDApi->_iter->GetNextRow(&row);
if (row.size() != 0) {
if ((pMDToDApi->_augs).size() > 0) {
// String and Tensors
GetTensorToBuff(row, "image_filename", pMDToDApi->_hasBatch, &results->fileNameBuff);
// for each operation, run eager mode, single threaded operation, will have to memcpy
// regardless
for (int i = 0; i < (pMDToDApi->_augs).size(); i++) {
// each Execute call will invoke a memcpy, this cannot really be optimized further
// for this use case, std move is added for fail save.
row["image"] = Execute((pMDToDApi->_augs)[i])(std::move(row["image"]));
if (row["image"] == nullptr) {
// nullptr means that the eager mode image processing failed, we fail in this case
return -1;
}
}
}
// FILE ID
GetValue<int64_t>(row, "id", &results->fileid);
pMDToDApi->_file_id = results->fileid; // hold current file id to enable embeddings update (no itr->getCurrent)
// IS FOR TRAIN
GetValue<int32_t>(row, "_isForTrain", &results->isForTrain);
GetValue<int32_t>(row, "_noOfFaces", &results->noOfFaces);
// String and Tensors
GetTensorToBuff(row, "image_filename", pMDToDApi->_hasBatch, &results->fileNameBuff);
GetTensorToBuff(row, "image", pMDToDApi->_hasBatch, &results->imageBuff);
GetTensorToBuff(row, "_embedding", pMDToDApi->_hasBatch, &results->embeddingBuff);
GetTensorToBuff(row, "label", pMDToDApi->_hasBatch, &results->labelBuff);
GetTensorToBuff(row, "_boundingBoxes", pMDToDApi->_hasBatch, &results->boundingBoxesBuff);
GetTensorToBuff(row, "_confidences", pMDToDApi->_hasBatch, &results->confidencesBuff);
GetTensorToBuff(row, "_landmarks", pMDToDApi->_hasBatch, &results->landmarksBuff);
GetTensorToBuff(row, "_faceFileNames", pMDToDApi->_hasBatch, &results->faceFileNamesBuff);
GetTensorToBuff(row, "_imageQualities", pMDToDApi->_hasBatch, &results->imageQualitiesBuff);
GetTensorToBuff(row, "_faceEmbeddings", pMDToDApi->_hasBatch, &results->faceEmbeddingsBuff);
return 0;
}
return -1;
}
extern "C" int MDToDApi_Stop(MDToDApi *pMDToDApi) {
// Manually terminate the pipeline
pMDToDApi->_iter->Stop();
MS_LOG(WARNING) << "pipline stoped";
return 0;
}
extern "C" int MDToDApi_Destroy(MDToDApi *pMDToDApi) {
MS_LOG(WARNING) << "pipeline deleted start";
pMDToDApi->_iter->Stop();
delete pMDToDApi;
MS_LOG(WARNING) << "pipeline deleted end";
return 0;
}
int GetJsonFullFileName(MDToDApi *pMDToDApi, std::string *filePath) {
int64_t file_id = pMDToDApi->_file_id;
if (file_id < 0) {
MS_LOG(ERROR) << "Illigal file ID to update: " << file_id << ".";
return -1;
}
std::string converted = std::to_string(pMDToDApi->_file_id);
*filePath = pMDToDApi->_folder_path + "/" + converted + ".json";
return 0;
}
extern "C" int MDToDApi_UpdateEmbeding(MDToDApi *pMDToDApi, const char *column, float *emmbeddings,
size_t emmbeddingsSize) {
auto columnName = std::string(column);
MS_LOG(INFO) << "Start update " << columnName;
std::string converted = std::to_string(pMDToDApi->_file_id);
std::string embedding_file_path = pMDToDApi->_storage_folder + "/" + converted + columnName + ".bin";
DataHelper dh;
MS_LOG(INFO) << "Try to save file " << embedding_file_path;
std::vector<float> bin_content(emmbeddings, emmbeddings + emmbeddingsSize);
Status rc = dh.template WriteBinFile<float>(embedding_file_path, bin_content);
if (rc.IsError()) {
MS_LOG(ERROR) << "Fail to write embedding file: " << embedding_file_path << ".";
return -1;
}
MS_LOG(INFO) << "Saved file " << embedding_file_path;
std::string file_path;
if (0 != GetJsonFullFileName(pMDToDApi, &file_path)) {
MS_LOG(ERROR) << "Failed to update " << columnName;
return -1;
}
MS_LOG(INFO) << "Updating json file: " << file_path;
rc = dh.UpdateValue(file_path, std::string(column), embedding_file_path);
if (rc.IsError()) {
MS_LOG(ERROR) << "Fail to update json: " << file_path << ".";
return -1;
}
return 0;
}
extern "C" int MDToDApi_UpdateStringArray(MDToDApi *pMDToDApi, const char *column, MDToDBuff_t MDbuff) {
auto columnName = std::string(column);
std::string file_path;
if (0 != GetJsonFullFileName(pMDToDApi, &file_path)) {
MS_LOG(ERROR) << "Failed to update " << columnName;
return -1;
}
MS_LOG(INFO) << "Start Update string array column: " << columnName << " in file " << file_path;
DataHelper dh;
std::vector<std::string> strVec;
if (MDbuff.DataSize > 0) {
const char *p = reinterpret_cast<char *>(MDbuff.Buff);
do {
strVec.push_back(std::string(p));
p += strVec.back().size() + 1;
} while (p < reinterpret_cast<char *>(MDbuff.Buff) + MDbuff.DataSize);
}
Status rc = dh.UpdateArray(file_path, columnName, strVec);
if (rc.IsError()) {
MS_LOG(ERROR) << "Fail to update json: " << file_path << ".";
return -1;
}
return 0;
}
extern "C" int MDToDApi_UpdateFloatArray(MDToDApi *pMDToDApi, const char *column, MDToDBuff_t MDBuff) {
auto columnName = std::string(column);
std::string file_path;
if (0 != GetJsonFullFileName(pMDToDApi, &file_path)) {
MS_LOG(ERROR) << "Faile to updaet " << columnName;
return -1;
}
MS_LOG(INFO) << "Start Update float Array column: " << columnName << " in file " << file_path;
DataHelper dh;
std::vector<float> vec;
MDBuffToVector<float>(MDBuff, &vec);
Status rc = dh.UpdateArray<float>(file_path, columnName, vec);
if (rc.IsError()) {
MS_LOG(ERROR) << "Fail to update json: " << file_path << ".";
return -1;
}
return 0;
}
extern "C" int MDToDApi_UpdateIsForTrain(MDToDApi *pMDToDApi, int32_t isForTrain) {
int64_t file_id = pMDToDApi->_file_id;
MS_LOG(INFO) << "Start Update isForTRain for id: " << file_id << " To " << isForTrain;
if (file_id < 0) return -1;
std::string converted = std::to_string(pMDToDApi->_file_id);
std::string file_path = pMDToDApi->_folder_path + "/" + converted + ".json";
DataHelper dh;
MS_LOG(INFO) << "Updating file: " << file_path;
Status rc = dh.UpdateValue<int32_t>(file_path, "_isForTrain", isForTrain, "");
if (rc.IsError()) {
MS_LOG(ERROR) << "Fail to update json: " << file_path << ".";
return -1;
}
return 0;
}
extern "C" int MDToDApi_UpdateNoOfFaces(MDToDApi *pMDToDApi, int32_t noOfFaces) {
int64_t file_id = pMDToDApi->_file_id;
MS_LOG(INFO) << "Start Update noOfFaces for id: " << file_id << " To " << noOfFaces;
if (file_id < 0) return -1;
std::string converted = std::to_string(pMDToDApi->_file_id);
std::string file_path = pMDToDApi->_folder_path + "/" + converted + ".json";
DataHelper dh;
MS_LOG(INFO) << "Updating file: " << file_path;
Status rc = dh.UpdateValue<int32_t>(file_path, "_noOfFaces", noOfFaces, "");
if (rc.IsError()) {
MS_LOG(ERROR) << "Fail to update json: " << file_path << ".";
return -1;
}
return 0;
}

View File

@ -0,0 +1,70 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef DATASET_MDTODAPI_H_
#define DATASET_MDTODAPI_H_
#include <stdint.h>
class MDToDApi;
typedef struct MDToDBuff {
void *Buff;
size_t DataSize;
size_t TensorSize[4];
size_t MaxBuffSize;
} MDToDBuff_t;
typedef struct MDToDConf {
const char *pFolderPath;
const char *pSchemFile;
const char *pStoragePath;
MDToDBuff_t columnsToReadBuff;
float MEAN[3];
float STD[3];
int ResizeSizeWH[2];
int CropSizeWH[2];
int64_t fileid; // -1 All files, otherwise get a single specifc file
} MDToDConf_t;
typedef struct MDToDResult {
int64_t fileid;
int32_t isForTrain;
int32_t noOfFaces;
MDToDBuff_t fileNameBuff;
MDToDBuff_t labelBuff;
MDToDBuff_t imageBuff;
MDToDBuff_t embeddingBuff;
MDToDBuff_t boundingBoxesBuff;
MDToDBuff_t confidencesBuff;
MDToDBuff_t landmarksBuff;
MDToDBuff_t faceFileNamesBuff;
MDToDBuff_t imageQualitiesBuff;
MDToDBuff_t faceEmbeddingsBuff;
} MDToDResult_t;
typedef int (*MDToDApi_pathTest_t)(const char *path);
typedef int (*MDToDApi_testAlbum_t)();
typedef MDToDApi *(*MDToDApi_createPipeLine_t)(MDToDConf_t MDConf);
typedef int (*MDToDApi_GetNext_t)(MDToDApi *pMDToDApi, MDToDResult_t *results);
typedef int (*MDToDApi_UpdateEmbeding_t)(MDToDApi *pMDToDApi, const char *column, float *emmbeddings,
size_t emmbeddingsSize);
typedef int (*MDToDApi_UpdateStringArray_t)(MDToDApi *pMDToDApi, const char *column, MDToDBuff_t MDbuff);
typedef int (*MDToDApi_UpdateFloatArray_t)(MDToDApi *pMDToDApi, const char *column, MDToDBuff_t MDbuff);
typedef int (*MDToDApi_UpdateIsForTrain_t)(MDToDApi *pMDToDApi, uint8_t isForTrain);
typedef int (*MDToDApi_UpdateNoOfFaces_t)(MDToDApi *pMDToDApi, int32_t noOfFaces);
typedef int (*MDToDApi_Stop_t)(MDToDApi *pMDToDApi);
typedef int (*MDToDApi_Destroy_t)(MDToDApi *pMDToDApi);
#endif

View File

@ -27,10 +27,10 @@
using MSTensor = mindspore::tensor::MSTensor;
using DETensor = mindspore::tensor::DETensor;
using mindspore::dataset::api::vision::Decode;
using mindspore::dataset::api::vision::Normalize;
using mindspore::dataset::api::vision::Resize;
using Execute = mindspore::dataset::api::Execute;
using mindspore::dataset::vision::Decode;
using mindspore::dataset::vision::Normalize;
using mindspore::dataset::vision::Resize;
using Execute = mindspore::dataset::Execute;
using Path = mindspore::dataset::Path;
class MindDataTestEager : public mindspore::CommonTest {