forked from mindspore-Ecosystem/mindspore
[MD] ToTensorOp: Add error msg for unsupported input image types: uint32, int64, uint64, string.
This commit is contained in:
parent
f0b4ab55bb
commit
427fb21057
|
@ -26,6 +26,10 @@ namespace mindspore {
|
|||
namespace dataset {
|
||||
Status ToTensorOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
IO_CHECK(input, output);
|
||||
auto input_type = input->type();
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(input_type != DataType::DE_UINT32 && input_type != DataType::DE_UINT64 &&
|
||||
input_type != DataType::DE_INT64 && input_type != DataType::DE_STRING,
|
||||
"ToTensor: Input includes unsupported data type in [uint32, int64, uint64, string].");
|
||||
// Rescale and convert HWC to CHW format
|
||||
return ToTensor(input, output, output_type_);
|
||||
}
|
||||
|
|
|
@ -30,7 +30,7 @@ SCHEMA_DIR_TF = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|||
def test_to_tensor_float32():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test C++ implementation with default float32 output_type
|
||||
Description: Test ToTensor C++ implementation with default float32 output_type in data pipeline
|
||||
Expectation: Dataset pipeline runs successfully and results are verified
|
||||
"""
|
||||
data1 = ds.MnistDataset(DATA_DIR, num_samples=10, shuffle=False)
|
||||
|
@ -57,7 +57,7 @@ def test_to_tensor_float32():
|
|||
def test_to_tensor_float64():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test C++ implementation with float64 output_type
|
||||
Description: Test ToTensor C++ implementation with float64 output_type in data pipeline
|
||||
Expectation: Dataset pipeline runs successfully and results are verified
|
||||
"""
|
||||
data1 = ds.MnistDataset(DATA_DIR, num_samples=10, shuffle=False)
|
||||
|
@ -84,7 +84,7 @@ def test_to_tensor_float64():
|
|||
def test_to_tensor_int32():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test C++ implementation with int32 output_type
|
||||
Description: Test ToTensor C++ implementation with int32 output_type in data pipeline
|
||||
Expectation: Dataset pipeline runs successfully and results are verified
|
||||
"""
|
||||
data1 = ds.MnistDataset(DATA_DIR, num_samples=10, shuffle=False)
|
||||
|
@ -109,35 +109,10 @@ def test_to_tensor_int32():
|
|||
np.testing.assert_almost_equal(img3, img1, 5)
|
||||
|
||||
|
||||
def test_to_tensor_eager():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test C++ implementation with various output_type in eager scenario with float16 image
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_np_type):
|
||||
image = np.random.randn(128, 128, 3).astype(np.float16)
|
||||
op = vision.ToTensor(output_type=my_np_type)
|
||||
out = op(image)
|
||||
|
||||
image = image / 255
|
||||
image = image.astype(my_np_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16)
|
||||
test_config(np.float32)
|
||||
test_config(np.float64)
|
||||
test_config(np.int8)
|
||||
test_config(np.int32)
|
||||
|
||||
|
||||
def test_to_tensor_float16():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test C++ implementation with float16 output_type
|
||||
Description: Test ToTensor C++ implementation with float16 output_type in data pipeline
|
||||
Expectation: Dataset pipeline runs successfully and results are verified
|
||||
"""
|
||||
data1 = ds.MnistDataset(DATA_DIR, num_samples=10, shuffle=False)
|
||||
|
@ -161,6 +136,202 @@ def test_to_tensor_float16():
|
|||
np.testing.assert_almost_equal(img3, img1, 3)
|
||||
|
||||
|
||||
def test_to_tensor_float16_eager():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor C++ implementation with float16 image type in eager mode
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_output_type, output_dtype, check_image=True):
|
||||
image = np.random.randn(128, 128, 3).astype(np.float16)
|
||||
op = vision.ToTensor(output_type=my_output_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == output_dtype
|
||||
|
||||
if check_image:
|
||||
image = image / 255
|
||||
image = image.astype(my_output_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16, "float16")
|
||||
test_config(np.float32, "float32")
|
||||
test_config(np.float64, "float64")
|
||||
test_config(np.int8, "int8")
|
||||
test_config(np.int16, "int16")
|
||||
test_config(np.int32, "int32")
|
||||
test_config(np.int64, "int64")
|
||||
test_config(np.uint8, "uint8")
|
||||
test_config(np.uint16, "uint16")
|
||||
test_config(np.uint32, "uint32")
|
||||
test_config(np.uint64, "uint64")
|
||||
test_config(np.bool, "bool", False)
|
||||
|
||||
|
||||
def test_to_tensor_float64_eager():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor C++ implementation with float64 image type in eager mode
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_output_type, output_dtype):
|
||||
image = np.random.randn(128, 128, 3).astype(np.float64)
|
||||
op = vision.ToTensor(output_type=my_output_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == output_dtype
|
||||
|
||||
image = image / 255
|
||||
image = image.astype(my_output_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16, "float16")
|
||||
test_config(np.float32, "float32")
|
||||
test_config(np.float64, "float64")
|
||||
test_config(np.int8, "int8")
|
||||
test_config(np.int16, "int16")
|
||||
test_config(np.int32, "int32")
|
||||
test_config(np.int64, "int64")
|
||||
test_config(np.uint8, "uint8")
|
||||
test_config(np.uint16, "uint16")
|
||||
test_config(np.uint32, "uint32")
|
||||
test_config(np.uint64, "uint64")
|
||||
test_config(np.bool, "bool")
|
||||
|
||||
|
||||
def test_to_tensor_int32_eager():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor C++ implementation with int32 image type in eager mode
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_output_type, output_dtype):
|
||||
image = np.random.randn(128, 128, 3).astype(np.int32)
|
||||
op = vision.ToTensor(output_type=my_output_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == output_dtype
|
||||
|
||||
image = image / 255
|
||||
image = image.astype(my_output_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16, "float16")
|
||||
test_config(np.float32, "float32")
|
||||
test_config(np.float64, "float64")
|
||||
test_config(np.int8, "int8")
|
||||
test_config(np.int16, "int16")
|
||||
test_config(np.int32, "int32")
|
||||
test_config(np.int64, "int64")
|
||||
test_config(np.uint8, "uint8")
|
||||
test_config(np.uint16, "uint16")
|
||||
test_config(np.uint32, "uint32")
|
||||
test_config(np.uint64, "uint64")
|
||||
test_config(np.bool, "bool")
|
||||
|
||||
|
||||
def test_to_tensor_int64_unsupported():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor C++ implementation with unsupported int64 image type
|
||||
Expectation: Correct error is thrown as expected
|
||||
"""
|
||||
|
||||
def test_config(my_output_type):
|
||||
image = np.random.randn(128, 128, 3).astype(np.int64)
|
||||
with pytest.raises(RuntimeError) as error_info:
|
||||
op = vision.ToTensor(output_type=my_output_type)
|
||||
_ = op(image)
|
||||
error_message = "ToTensor: Input includes unsupported data type in [uint32, int64, uint64, string]."
|
||||
assert error_message in str(error_info.value)
|
||||
|
||||
test_config(np.int8)
|
||||
test_config(np.int16)
|
||||
test_config(np.int32)
|
||||
test_config(np.int64)
|
||||
test_config(np.uint8)
|
||||
test_config(np.uint16)
|
||||
test_config(np.uint32)
|
||||
test_config(np.uint64)
|
||||
test_config(np.float32)
|
||||
|
||||
|
||||
def test_to_tensor_uint32_unsupported():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor C++ implementation with unsupported uint32 image type
|
||||
Expectation: Correct error is thrown as expected
|
||||
"""
|
||||
|
||||
def test_config(my_output_type):
|
||||
image = np.random.randn(128, 128, 3).astype(np.uint32)
|
||||
with pytest.raises(RuntimeError) as error_info:
|
||||
op = vision.ToTensor(output_type=my_output_type)
|
||||
_ = op(image)
|
||||
error_message = "ToTensor: Input includes unsupported data type in [uint32, int64, uint64, string]."
|
||||
assert error_message in str(error_info.value)
|
||||
|
||||
test_config(np.int8)
|
||||
test_config(np.int16)
|
||||
test_config(np.int32)
|
||||
test_config(np.int64)
|
||||
test_config(np.uint8)
|
||||
test_config(np.uint16)
|
||||
test_config(np.uint32)
|
||||
test_config(np.uint64)
|
||||
test_config(np.float32)
|
||||
|
||||
|
||||
def test_to_tensor_uint64_unsupported():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor C++ implementation with unsupported uint64 image type
|
||||
Expectation: Correct error is thrown as expected
|
||||
"""
|
||||
|
||||
def test_config(my_output_type):
|
||||
image = np.random.randn(128, 128, 3).astype(np.uint64)
|
||||
with pytest.raises(RuntimeError) as error_info:
|
||||
op = vision.ToTensor(output_type=my_output_type)
|
||||
_ = op(image)
|
||||
error_message = "ToTensor: Input includes unsupported data type in [uint32, int64, uint64, string]."
|
||||
assert error_message in str(error_info.value)
|
||||
|
||||
test_config(np.int8)
|
||||
test_config(np.int16)
|
||||
test_config(np.int32)
|
||||
test_config(np.int64)
|
||||
test_config(np.uint8)
|
||||
test_config(np.uint16)
|
||||
test_config(np.uint32)
|
||||
test_config(np.uint64)
|
||||
test_config(np.float32)
|
||||
|
||||
|
||||
def test_to_tensor_eager_bool():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor C++ implementation in eager scenario with bool image
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
image = np.random.randint(0, 255, (128, 128, 3)).astype(np.bool)
|
||||
my_np_type = np.uint8
|
||||
op = vision.ToTensor(output_type=my_np_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == "uint8"
|
||||
|
||||
|
||||
def test_to_tensor_errors():
|
||||
"""
|
||||
Feature: ToTensor op
|
||||
|
@ -194,10 +365,31 @@ def test_to_tensor_errors():
|
|||
assert "got an unexpected keyword argument 'data_type'" in str(error_info.value)
|
||||
|
||||
|
||||
def test_to_tensor_eager_error_string():
|
||||
"""
|
||||
Feature: ToTensor op
|
||||
Description: Test ToTensor C++ implementation in eager scenario with string image
|
||||
Expectation: Correct error is thrown as expected
|
||||
"""
|
||||
image = np.random.randint(0, 255, (128, 128, 3)).astype(np.str)
|
||||
my_np_type = np.uint8
|
||||
with pytest.raises(RuntimeError) as error_info:
|
||||
op = vision.ToTensor(output_type=my_np_type)
|
||||
_ = op(image)
|
||||
assert "ToTensor: Input includes unsupported data type in [uint32, int64, uint64, string]." in str(error_info.value)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_to_tensor_float32()
|
||||
test_to_tensor_float64()
|
||||
test_to_tensor_int32()
|
||||
test_to_tensor_eager()
|
||||
test_to_tensor_float16()
|
||||
test_to_tensor_float16_eager()
|
||||
test_to_tensor_float64_eager()
|
||||
test_to_tensor_int32_eager()
|
||||
test_to_tensor_int64_unsupported()
|
||||
test_to_tensor_uint32_unsupported()
|
||||
test_to_tensor_uint64_unsupported()
|
||||
test_to_tensor_eager_bool()
|
||||
test_to_tensor_errors()
|
||||
test_to_tensor_eager_error_string()
|
||||
|
|
|
@ -135,6 +135,225 @@ def test_to_tensor_float16():
|
|||
np.testing.assert_almost_equal(img2, img1, 3)
|
||||
|
||||
|
||||
def test_to_tensor_eager_float16():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor with various supported output_type values in eager scenario with float16 image
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_output_type, output_dtype):
|
||||
image = np.random.randn(128, 128, 3).astype(np.float16)
|
||||
op = py_vision.ToTensor(output_type=my_output_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == output_dtype
|
||||
|
||||
image = image / 255
|
||||
image = image.astype(my_output_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16, "float16")
|
||||
test_config(np.float32, "float32")
|
||||
test_config(np.float64, "float64")
|
||||
test_config(np.int8, "int8")
|
||||
test_config(np.int16, "int16")
|
||||
test_config(np.int32, "int32")
|
||||
test_config(np.int64, "int64")
|
||||
test_config(np.uint8, "uint8")
|
||||
test_config(np.uint16, "uint16")
|
||||
test_config(np.uint32, "uint32")
|
||||
test_config(np.uint64, "uint64")
|
||||
test_config(np.bool, "bool")
|
||||
|
||||
|
||||
def test_to_tensor_eager_float64():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor with various supported output_type values in eager scenario with float64 image
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_output_type, output_dtype):
|
||||
image = np.random.randn(128, 128, 3).astype(np.float64)
|
||||
op = py_vision.ToTensor(output_type=my_output_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == output_dtype
|
||||
|
||||
image = image / 255
|
||||
image = image.astype(my_output_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16, "float16")
|
||||
test_config(np.float32, "float32")
|
||||
test_config(np.float64, "float64")
|
||||
test_config(np.int8, "int8")
|
||||
test_config(np.int16, "int16")
|
||||
test_config(np.int32, "int32")
|
||||
test_config(np.int64, "int64")
|
||||
test_config(np.uint8, "uint8")
|
||||
test_config(np.uint16, "uint16")
|
||||
test_config(np.uint32, "uint32")
|
||||
test_config(np.uint64, "uint64")
|
||||
test_config(np.bool, "bool")
|
||||
|
||||
|
||||
def test_to_tensor_eager_int32():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor with various supported output_type values in eager scenario with int32 image
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_output_type, output_dtype):
|
||||
image = np.random.randn(128, 128, 3).astype(np.int32)
|
||||
op = py_vision.ToTensor(output_type=my_output_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == output_dtype
|
||||
|
||||
image = image / 255
|
||||
image = image.astype(my_output_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16, "float16")
|
||||
test_config(np.float32, "float32")
|
||||
test_config(np.float64, "float64")
|
||||
test_config(np.int8, "int8")
|
||||
test_config(np.int16, "int16")
|
||||
test_config(np.int32, "int32")
|
||||
test_config(np.int64, "int64")
|
||||
test_config(np.uint8, "uint8")
|
||||
test_config(np.uint16, "uint16")
|
||||
test_config(np.uint32, "uint32")
|
||||
test_config(np.uint64, "uint64")
|
||||
test_config(np.bool, "bool")
|
||||
|
||||
|
||||
def test_to_tensor_eager_int64():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor with various supported output_type values in eager scenario with int64 image
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_output_type, output_dtype):
|
||||
image = np.random.randn(128, 128, 3).astype(np.int64)
|
||||
op = py_vision.ToTensor(output_type=my_output_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == output_dtype
|
||||
|
||||
image = image / 255
|
||||
image = image.astype(my_output_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16, "float16")
|
||||
test_config(np.float32, "float32")
|
||||
test_config(np.float64, "float64")
|
||||
test_config(np.int8, "int8")
|
||||
test_config(np.int16, "int16")
|
||||
test_config(np.int32, "int32")
|
||||
test_config(np.int64, "int64")
|
||||
test_config(np.uint8, "uint8")
|
||||
test_config(np.uint16, "uint16")
|
||||
test_config(np.uint32, "uint32")
|
||||
test_config(np.uint64, "uint64")
|
||||
test_config(np.bool, "bool")
|
||||
|
||||
|
||||
def test_to_tensor_eager_uint32():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor with various supported output_type values in eager scenario with uint32 image
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_output_type, output_dtype):
|
||||
image = np.random.randn(128, 128, 3).astype(np.uint32)
|
||||
op = py_vision.ToTensor(output_type=my_output_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == output_dtype
|
||||
|
||||
image = image / 255
|
||||
image = image.astype(my_output_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16, "float16")
|
||||
test_config(np.float32, "float32")
|
||||
test_config(np.float64, "float64")
|
||||
test_config(np.int8, "int8")
|
||||
test_config(np.int16, "int16")
|
||||
test_config(np.int32, "int32")
|
||||
test_config(np.int64, "int64")
|
||||
test_config(np.uint8, "uint8")
|
||||
test_config(np.uint16, "uint16")
|
||||
test_config(np.uint32, "uint32")
|
||||
test_config(np.uint64, "uint64")
|
||||
test_config(np.bool, "bool")
|
||||
|
||||
|
||||
def test_to_tensor_eager_uint64():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor with various supported output_type values in eager scenario with uint64 image
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
def test_config(my_output_type, output_dtype):
|
||||
image = np.random.randn(128, 128, 3).astype(np.uint64)
|
||||
op = py_vision.ToTensor(output_type=my_output_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == output_dtype
|
||||
|
||||
image = image / 255
|
||||
image = image.astype(my_output_type)
|
||||
image = np.transpose(image, (2, 0, 1))
|
||||
|
||||
np.testing.assert_almost_equal(out, image, 5)
|
||||
|
||||
test_config(np.float16, "float16")
|
||||
test_config(np.float32, "float32")
|
||||
test_config(np.float64, "float64")
|
||||
test_config(np.int8, "int8")
|
||||
test_config(np.int16, "int16")
|
||||
test_config(np.int32, "int32")
|
||||
test_config(np.int64, "int64")
|
||||
test_config(np.uint8, "uint8")
|
||||
test_config(np.uint16, "uint16")
|
||||
test_config(np.uint32, "uint32")
|
||||
test_config(np.uint64, "uint64")
|
||||
test_config(np.bool, "bool")
|
||||
|
||||
|
||||
def test_to_tensor_eager_bool():
|
||||
"""
|
||||
Feature: ToTensor Op
|
||||
Description: Test ToTensor in eager scenario with bool image
|
||||
Expectation: Test runs successfully and results are verified
|
||||
"""
|
||||
|
||||
image = np.random.randint(0, 255, (128, 128, 3)).astype(np.bool)
|
||||
my_np_type = np.uint8
|
||||
op = py_vision.ToTensor(output_type=my_np_type)
|
||||
out = op(image)
|
||||
|
||||
assert out.dtype == "uint8"
|
||||
|
||||
|
||||
def test_to_tensor_errors():
|
||||
"""
|
||||
Feature: ToTensor op
|
||||
|
@ -177,11 +396,34 @@ def skip_test_to_tensor_errors2():
|
|||
assert "Argument output_type with value None is not of type" in str(error_info.value)
|
||||
|
||||
|
||||
def test_to_tensor_eager_error_string():
|
||||
"""
|
||||
Feature: ToTensor op
|
||||
Description: Test ToTensor in eager scenario with string image
|
||||
Expectation: Correct error is thrown as expected
|
||||
"""
|
||||
image = np.random.randint(0, 255, (128, 128, 3)).astype(np.str)
|
||||
my_np_type = np.uint8
|
||||
with pytest.raises(TypeError) as error_info:
|
||||
op = py_vision.ToTensor(output_type=my_np_type)
|
||||
_ = op(image)
|
||||
assert "ufunc 'true_divide' not supported for the input types" in str(error_info.value)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_to_tensor_float32()
|
||||
test_to_tensor_float64()
|
||||
test_to_tensor_int32()
|
||||
test_to_tensor_eager()
|
||||
test_to_tensor_float16()
|
||||
test_to_tensor_eager_float16()
|
||||
test_to_tensor_eager_float64()
|
||||
test_to_tensor_eager_int32()
|
||||
test_to_tensor_eager_int64()
|
||||
test_to_tensor_eager_uint32()
|
||||
test_to_tensor_eager_uint64()
|
||||
test_to_tensor_eager_int32()
|
||||
test_to_tensor_eager_bool()
|
||||
test_to_tensor_errors()
|
||||
skip_test_to_tensor_errors2()
|
||||
test_to_tensor_eager_error_string()
|
||||
|
|
Loading…
Reference in New Issue