forked from mindspore-Ecosystem/mindspore
!6587 update links of README
Merge pull request !6587 from TingWang/update-readme-links
This commit is contained in:
commit
424be30e2a
|
@ -9,7 +9,7 @@ MindSpore Lite是MindSpore推出的端云协同的、轻量化、高性能AI推
|
|||
|
||||
<img src="../../docs/MindSpore-Lite-architecture.png" alt="MindSpore Lite Architecture" width="600"/>
|
||||
|
||||
欲了解更多详情,请查看我们的[MindSpore Lite 总体架构](https://www.mindspore.cn/lite/doc/note/zh-CN/master/design/mindspore/architecture_lite.html)。
|
||||
欲了解更多详情,请查看我们的[MindSpore Lite 总体架构](https://www.mindspore.cn/doc/note/zh-CN/master/design/mindspore/architecture_lite.html)。
|
||||
|
||||
## MindSpore Lite技术特点
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
|||
|
||||
## [Mixed Precision](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
|
|
@ -47,7 +47,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
|
|||
|
||||
## [Mixed Precision](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
|
|
|
@ -147,7 +147,7 @@ sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
|
|||
|
||||
### Training on Ascend
|
||||
|
||||
To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_datasets.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
|
||||
To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_dataset.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
|
||||
|
||||
|
||||
- Distribute mode
|
||||
|
|
|
@ -236,7 +236,7 @@ step: 300, loss is 0.18949677, fps is 57.63118508760329
|
|||
## [How to use](#contents)
|
||||
### Inference
|
||||
|
||||
If you need to use the trained model to perform inference on multiple hardware platforms, such as Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
|
||||
If you need to use the trained model to perform inference on multiple hardware platforms, such as Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
|
||||
|
||||
- Running on Ascend
|
||||
|
||||
|
|
|
@ -135,7 +135,7 @@ After installing MindSpore via the official website, you can start training and
|
|||
## [Training Process](#contents)
|
||||
|
||||
### Training on Ascend
|
||||
To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_datasets.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.**
|
||||
To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_dataset.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.**
|
||||
|
||||
- Stand alone mode
|
||||
|
||||
|
|
|
@ -50,8 +50,8 @@ Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
|
|||
- Framework
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
||||
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
# [Script description](#contents)
|
||||
|
||||
|
|
|
@ -134,7 +134,7 @@ python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.c
|
|||
|
||||
### Training on Ascend
|
||||
|
||||
To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_datasets.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
|
||||
To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_dataset.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
|
||||
|
||||
|
||||
- Distribute mode
|
||||
|
|
Loading…
Reference in New Issue